Collaborative Research: Estimating Ecosystem Model Uncertainties in Pan-Regional Syntheses and Climate Change Impacts on Coastal Domains of the North Pacific Ocean

合作研究:估计泛区域综合中的生态系统模型不确定性和气候变化对北太平洋沿海地区的影响

基本信息

  • 批准号:
    0815030
  • 负责人:
  • 金额:
    $ 32.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

A sequence of Bayesian Hierarchical Models (BHM) will be developed to synthesize coastal ecosystem dynamics and responses to climate change across focus regions bounding the North Pacific Ocean. BHM is a unified probabilistic modeling approach that updates uncertain distributional knowledge about process models and parameters in the presence of multi-platform observations. Summary measures of the resulting "posterior" distributions provide realistic quantitative estimates of central tendencies and uncertainties. The investigators will develop our process model distributions after the North Pacific Ecosystem Model for Understanding Regional Oceanography (NEMURO). So, a significant outcome of the research will be quantitative understanding and comparisons of the relative uncertainties of NEMURO state variables and parameters, region-by-region across the North Pacific. A three-step BHM development plan will address pan-regional syntheses, climate change impacts, and ecosystem management tool concepts, over a three-year schedule. The initial BHM development will be a relocatable, time-dependent, one-dimensional (vertical) model intended to summarize ecosystem dynamics for different regimes (shelf, slope, upwelling loci, boundary current extensions, etc.) within the coastal regions of interest. Data and insights from multi-disciplinary observational programs and deterministic model implementations in coastal regions of the North Pacific will be fully exploited. In addition to emphasizing field observations, the BHM methodology will incorporate deterministic model output (e.g. the Regional Ocean Modeling System or ROMS) as data, providing a rigorous and complete synthesis of the state of understanding for coastal ocean ecosystems of the North Pacific. The investigators will focus on data and models in the Eastern Pacific from parts of the US GLOBEC program (i.e. California Current System, CCS; and Coastal Gulf of Alaska, CGOA) and in the Western Pacific (WPAC) from the North Pacific Marine Science Organization (PICES). The 1D BHM will also be implemented in climate-scale calculations to document and compare climate change impacts within and across North Pacific coastal ocean ecosystems, and to quantify uncertainties in these comparisons. The ultimate BHM implementation will be in three dimensions, accounting for mesoscale ocean dynamical impacts on the coastal ecosystem regions, and demonstrating potential ecosystem management advantages of the BHM approach.The intellectual merit of this research derives from a novel extension of probabilistic modeling methods (i.e. BHM) to synthesize disparate observations and deterministic model simulations from coastal regions on eastern and western boundaries of a major ocean basin. Application of BHM in Biological Oceanography represents a transformative research step and introduces a new paradigm. The research proposed here combines the strengths of deterministic and probabilistic models to obtain uncertainty estimates for state variables and parameters of a modern lower-trophic level ocean ecosystem model. A broader impact of the research will be the training of postdoctoral and graduate students (in statistics and oceanography) in this new synergy of ocean modeling approaches. As ecosystem managers and scientists learn to utilize state and parameter information in probability distributions, uncertain parts of the ecosystem model can be targeted for more intensive observations and/or more sophisticated parameterizations.
将开发一系列贝叶斯层次模型,以综合北太平洋各重点区域的沿海生态系统动态和对气候变化的反应。BHM是一种统一的概率建模方法,在多平台观测的情况下更新关于过程模型和参数的不确定分布知识。由此产生的“后验”分布的汇总测量提供了对中心趋势和不确定性的现实定量估计。研究人员将在北太平洋生态系统模型理解区域海洋学(根室)之后开发我们的过程模型分布。因此,研究的一个重要成果将是对北太平洋各区域根室状态变量和参数的相对不确定性的定量理解和比较。BHM的三步发展计划将在三年时间内解决泛区域综合、气候变化影响和生态系统管理工具概念。最初的BHM开发将是一个可重新定位的、随时间变化的、一维(垂直)模型,旨在总结不同制度(大陆架、斜坡、上升流地点、边界流延伸等)的生态系统动态。在沿海地区的利益。将充分利用来自北太平洋沿海地区多学科观测计划和确定性模型实施的数据和见解。除了强调实地观测外,BHM方法还将把确定性模型输出(例如区域海洋模拟系统)作为数据,对北太平洋沿海海洋生态系统的了解状况进行严格和完整的综合。调查人员将重点关注美国GLOBEC计划部分(即加州海流系统,CCS;阿拉斯加沿海海湾,CGOA)和北太平洋海洋科学组织(PICES)西太平洋(WPAC)的数据和模型。1D BHM还将在气候尺度计算中实施,以记录和比较北太平洋沿海海洋生态系统内部和之间的气候变化影响,并量化这些比较中的不确定性。BHM的最终实施将在三个方面,考虑到中尺度海洋动力学对沿海生态系统区域的影响,并展示了BHM方法潜在的生态系统管理优势。本研究的智力价值来自于概率建模方法的新扩展(即BHM)综合来自主要海洋盆地东部和西部边界沿海地区的不同观测和确定性模型模拟。BHM在生物海洋学中的应用代表了一个变革性的研究步骤,并引入了一个新的范式。这里提出的研究结合了确定性和概率模型的优势,以获得现代低营养水平海洋生态系统模型的状态变量和参数的不确定性估计。这项研究的更广泛影响将是对博士后和研究生(统计学和海洋学)进行海洋建模方法新协同作用的培训。随着生态系统管理者和科学家学会利用概率分布中的状态和参数信息,生态系统模型的不确定部分可以针对更密集的观测和/或更复杂的参数化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralph Milliff其他文献

Ralph Milliff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralph Milliff', 18)}}的其他基金

SGER: Quantifying Upper Ocean Response to an Ensemble of Surface Wind Field Forcing During a Madden-Julian Oscillation
SGER:量化马登-朱利安振荡期间表面风场强迫集合的上层海洋响应
  • 批准号:
    0354637
  • 财政年份:
    2003
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant

相似国自然基金

面向海洋监测的多AUV协同估计与控制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
融合图像先验基元自学习的“少样本欠标注”心脏协同运动估计方法 研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于协同自适应波束赋形的多STAR-RIS赋能网络性能优化模型研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智能电池管理系统模态随动状态估计和形式化协同均衡研究
  • 批准号:
    52377221
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
面向雷达通信一体化的高动态信道参数估计与协同优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有向分布传感网络协同自适应估计与控制一体化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
车云协同的动力电池服役周期容量估计原理和方法研究
  • 批准号:
    22ZR1444500
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
网络-爬坡协同攻击下多区域配电网状态估计及移动目标防御方法研究
  • 批准号:
    52207130
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向交通信息物理系统的交通状态估计及协同安全管控研究
  • 批准号:
    52172339
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
多源数据协同的高寒地区高分辨率积雪参数估计研究——以青藏高原为例
  • 批准号:
    42075130
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: MRA: Estimating and forecasting nonstationary, multi-scale climate and land-use effects on avian communities
合作研究:MRA:估计和预测非平稳、多尺度气候和土地利用对鸟类群落的影响
  • 批准号:
    2213566
  • 财政年份:
    2023
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: MRA: Estimating and forecasting nonstationary, multi-scale climate and land-use effects on avian communities
合作研究:MRA:估计和预测非平稳、多尺度气候和土地利用对鸟类群落的影响
  • 批准号:
    2213565
  • 财政年份:
    2023
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
Collaborative Research: EAR-Climate: Estimating the Emergence of the Anthropogenic Warming Signal in Snow Water Resource Metrics
合作研究:EAR-气候:估计雪水资源指标中人为变暖信号的出现
  • 批准号:
    2218738
  • 财政年份:
    2022
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
Collaborative Research: EAR-Climate: Estimating the Emergence of the Anthropogenic Warming Signal in Snow Water Resource Metrics
合作研究:EAR-气候:估计雪水资源指标中人为变暖信号的出现
  • 批准号:
    2218736
  • 财政年份:
    2022
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
Collaborative Research: EAR-Climate: Estimating the Emergence of the Anthropogenic Warming Signal in Snow Water Resource Metrics
合作研究:EAR-气候:估计雪水资源指标中人为变暖信号的出现
  • 批准号:
    2218737
  • 财政年份:
    2022
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141413
  • 财政年份:
    2022
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141246
  • 财政年份:
    2022
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Estimating Subglacial Effective Pressure with Active-source Seismic Data
合作研究:利用主动源地震数据估算冰下有效压力
  • 批准号:
    2048315
  • 财政年份:
    2021
  • 资助金额:
    $ 32.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了