Polyhedral Approaches to Selected Problems in Computational Logic
计算逻辑中选定问题的多面体方法
基本信息
- 批准号:0827397
- 负责人:
- 金额:$ 30.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-02-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores connections between computational logic and polyhedral combinatorics through the paradigm of Quantified Polyhedral programming. Quantified Polyhedral programming encompasses Quantified Linear Programming (QLP) and Quantified Integer Programming (QIP); both the programming paradigms are extremely useful in modeling environment-dependent actions in real-time scheduling problems. Quantified Integer Programs can also be used to formally verify the correctness of programs through the mechanism of Abstract Interpretation. This project aims to provide a framework in which traditional notions of duality and convexity can be extended to the 2-person game setting. For instance, a typical optimization problem is defined by an optimization function and a convex set, called the domain of feasibility. In real-world applications, such as robot navigation, the domain is not fixed but varies continuously as a consequence of events initiated by the environment. Thus, the concept of optimality needs to be defined in a 2-person setting.On a broader front, the investigator plans to significantly advance the state-of-the-art in Quantified Polyhedral Programming through a combination of innovative research and the integration of research themes into graduate and undergraduate education. This work will have the added benefit of increasing the participation of women and under-represented minorities in computer science research.This award is co-funded by West Virginia EPSCoR.
这个项目通过量化多面体编程的范例探索计算逻辑和多面体组合学之间的联系。量化多面体规划包括量化线性规划(QLP)和量化线性规划(QIP);这两种编程范式在建模实时调度问题中的环境依赖行为时非常有用。量化的可验证程序还可以通过抽象解释机制来形式化地验证程序的正确性。这个项目的目的是提供一个框架,在这个框架中,传统的对偶和凸性概念可以扩展到2人游戏设置。例如,一个典型的优化问题是由一个优化函数和一个凸集定义的,称为可行域。在现实世界的应用中,如机器人导航,域是不固定的,但不断变化的结果,由环境发起的事件。因此,最优性的概念需要在2人设置中定义。在更广泛的方面,研究者计划通过创新研究和研究主题融入研究生和本科教育的结合,显着推进量化多面体编程的最新技术。 这项工作将增加妇女和代表性不足的少数民族在计算机科学研究的参与的额外好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishnamurthy Subramani其他文献
Krishnamurthy Subramani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishnamurthy Subramani', 18)}}的其他基金
Eager: Optimal Length Integer Resolution Refutation in UTVPI Constraints
Eager:UTVPI 约束中的最佳长度整数解析反驳
- 批准号:
1305054 - 财政年份:2013
- 资助金额:
$ 30.03万 - 项目类别:
Standard Grant
Collaborative Research: Algorithmic Aspects of Risk Management
合作研究:风险管理的算法方面
- 批准号:
0849735 - 财政年份:2009
- 资助金额:
$ 30.03万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
- 批准号:
2608627 - 财政年份:2025
- 资助金额:
$ 30.03万 - 项目类别:
Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 30.03万 - 项目类别:
Studentship
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 30.03万 - 项目类别:
EU-Funded
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
- 批准号:
10080598 - 财政年份:2024
- 资助金额:
$ 30.03万 - 项目类别:
EU-Funded
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
- 批准号:
AH/Z000084/1 - 财政年份:2024
- 资助金额:
$ 30.03万 - 项目类别:
Research Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 30.03万 - 项目类别:
Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
- 批准号:
EP/Y032640/1 - 财政年份:2024
- 资助金额:
$ 30.03万 - 项目类别:
Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
- 批准号:
MR/Y020200/1 - 财政年份:2024
- 资助金额:
$ 30.03万 - 项目类别:
Fellowship
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 30.03万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 30.03万 - 项目类别:
Standard Grant