Studies on homological and intersection theory questions over local rings

局部环同调与交集理论问题的研究

基本信息

  • 批准号:
    0834050
  • 负责人:
  • 金额:
    $ 14.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

This proposal addresses several classical and emerging problems in commutative algebra and algebraic geometry. Many questions in commutative algebra, first studied by Auslander, Peskine-Szpiro, and Serre, relate homological properties of modules to other invariants such as depth or dimension. One of the most often exploited properties allows the modules to have finite projective dimensions. Recently, it has emerged that over rings with nice enough singularities, a much weaker condition suffices: being zero in the reduced, rational Grothendieck group of finitely generated modules. The PI will, broadly speaking, pursue a program to investigate the type of singularities for which the classical questions can be extended. This approach simultaneously generates several other projects. One of them will study a new, asymptotic version of Serre's intersection multiplicity over local complete intersections. Another project will investigate a local version of Hartshorne's conjecture on Chow groups of smooth projective hypersurfaces and its consequences on splitting of vector bundles. The questions being studied lie naturally at the intersection of algebraic geometry, commutative algebra and algebraic K-theory. Algebraic geometry studies shapes and properties of solutions of polynomial equations. Commutative algebra focuses more on general objects, such as rings of functions and modules over them. Both of these fields have been studied for a very long time and are still developing rapidly, with newly discovered connections to many areas of mathematics and sciences, such as physics, statistics, and coding theory. This project will utilize a relatively new viewpoin from algebraic K-theory, which examines subtle invariants of rings, to understand nice properties of geometric and algebraic objects.
这一建议解决了交换代数和代数几何中的几个经典和新兴问题。交换代数中的许多问题,最早由Auslander,Peskine-Szpiro和Serre研究,将模的同调性质与其他不变量如深度或维度联系起来。最常被利用的性质之一是允许模具有有限的射影维度。最近,有研究表明,在具有足够好奇异性的环上,一个弱得多的条件足够:在有限生成模的约化有理Grothendieck群中为零。广义地说,PI将执行一项计划,以调查古典问题可以推广到的奇点类型。这种方法可以同时生成其他几个项目。其中一人将研究局部完全交集上Serre交多重性的一种新的渐近形式。另一个项目将研究哈特肖恩关于光滑射影超曲面的Chow群的猜想的一个局部版本及其对向量丛分裂的影响。所研究的问题自然是代数几何、交换代数和代数K-理论的交集。代数几何研究多项式方程解的形状和性质。交换代数更多地关注一般对象,如函数环和函数环上的模。这两个领域都已经研究了很长时间,而且仍在快速发展,新发现的联系与许多数学和科学领域,如物理、统计学和编码理论。这个项目将利用代数K-理论的一个相对较新的观点来研究环的微妙不变量,以了解几何和代数对象的良好性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hailong Dao其他文献

ON THE ASSOCIATED PRIMES OF LOCAL COHOMOLOGY
论局部上同调的关联素数
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Hailong Dao;Pham Hung Quy
  • 通讯作者:
    Pham Hung Quy
On Monomial Golod Ideals
论单项式金理想
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Hailong Dao;Alessandro De Stefani
  • 通讯作者:
    Alessandro De Stefani
Higher nerves of simplicial complexes
单纯复合体的高级神经
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hailong Dao;Joseph Doolittle;Ken Duna;Bennet Goeckner;Brent Holmes;Justin Lyle
  • 通讯作者:
    Justin Lyle
Minimal Cohen-Macaulay Simplicial Complexes
最小 Cohen-Macaulay 单纯复形
On the relationship between depth and cohomological dimension
论深度与上同调维数的关系
  • DOI:
    10.1112/s0010437x15007678
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Hailong Dao;Shunsuke Takagi
  • 通讯作者:
    Shunsuke Takagi

Hailong Dao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hailong Dao', 18)}}的其他基金

Conference in Commutative Algebra
交换代数会议
  • 批准号:
    1836048
  • 财政年份:
    2018
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Standard Grant
Conference in Commutative Algebra
交换代数会议
  • 批准号:
    1745772
  • 财政年份:
    2017
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Standard Grant
Homological Properties of Commutative Rings and Applications
交换环的同调性质及其应用
  • 批准号:
    1104017
  • 财政年份:
    2011
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Standard Grant

相似海外基金

Homological Algebra of Landau-Ginzburg Mirror Symmetry
Landau-Ginzburg 镜像对称的同调代数
  • 批准号:
    EP/Y033574/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
  • 批准号:
    2316538
  • 财政年份:
    2023
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Fellowship Award
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
  • 批准号:
    2896389
  • 财政年份:
    2023
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Studentship
Homological approaches to differential forms, differential operators, and transfer of algebra structures
微分形式、微分算子和代数结构传递的同调方法
  • 批准号:
    2302198
  • 财政年份:
    2023
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Standard Grant
Homological Commutative Algebra and Symmetry
同调交换代数和对称性
  • 批准号:
    2302341
  • 财政年份:
    2023
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Continuing Grant
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
  • 批准号:
    2785744
  • 财政年份:
    2023
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Studentship
CAREER: Problems in Commutative and Homological algebra
职业:交换代数和同调代数问题
  • 批准号:
    2236983
  • 财政年份:
    2023
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Continuing Grant
Topics in noncommutative algebra 2022: homological regularities
2022 年非交换代数专题:同调正则
  • 批准号:
    2302087
  • 财政年份:
    2023
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Continuing Grant
Brauer group and homological mirror symmetry
布劳尔群和同调镜像对称
  • 批准号:
    23KJ0341
  • 财政年份:
    2023
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
RUI: Homological Techniques in Quantum Symmetries
RUI:量子对称性中的同调技术
  • 批准号:
    2201146
  • 财政年份:
    2022
  • 资助金额:
    $ 14.52万
  • 项目类别:
    Interagency Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了