Homological Algebra of Landau-Ginzburg Mirror Symmetry

Landau-Ginzburg 镜像对称的同调代数

基本信息

  • 批准号:
    EP/Y033574/1
  • 负责人:
  • 金额:
    $ 10.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

This is a research project to establish algebraic and geometric results inspired by a duality originally from string theory.Right before the turn of the century, theoretical physics provided an insight to geometry that led to many modern successes in geometric research. They discovered a duality in string theory had implications and applications to the study of higher dimensional geometry, making answers to classical questions about the geometry of certain six-dimensional spaces accessible. Roughly speaking, for (classical) string theory to provide a potential physical theory for the universe, it requires the universe to be 10-dimensional. Four of these dimensions are the standard 3 space dimensions and one time dimension we experience in our lives, and the other six are a so-called Calabi-Yau manifold. It is still unclear how many Calabi-Yau manifolds there are, and we study them in many different ways, but string theory has given us a deep connection between geometric research disciplines. In particular, a duality in string theory states that each Calabi-Yau manifold has a "mirror" which is another Calabi-Yau manifold so that various geometric and physical properties of one are encapsulated in other geometric and physical properties of its mirror. This phenomenon in mathematics is now known as mirror symmetry. In particular, hard computations and computational open questions in symplectic geometry associated to a Calabi-Yau manifold were now encoded in the algebraic geometry of its mirror. At the onset of mirror symmetry, these algebro-geometric computations were much easier and then they were then used as a guiding principle for what we aim to prove in symplectic geometry. This made century-old problems in enumerative geometry achievable. In 1994, the Fields Medallist Kontsevich provided a conjectural but fully mathematical version of mirror symmetry, encoding the symplectic geometry in what is called a Fukaya category and the algebraic geometry in a derived category of coherent sheaves. This provided a robust formulation in algebra of this physical and geometric phenomenon.Throughout the past three decades, mirror symmetry has expanded and it is now seen that mirror symmetry is not just a relationship amongst Calabi-Yau manifolds, but many more geometric spaces (e.g., Fano manifolds, log Calabi-Yau varieties). However, it has also been extended to the study of singularities. Interestingly, one can model the geometry of certain spaces by constructing a function so that the function is singular along the original space. Then one can deform this model and still obtain a physical model for string theory. This is an example of a Landau-Ginzburg model. Mirror symmetry has been established for Landau-Ginzburg models in a few cases, and it has been shown to be powerful in the study of classical higher-dimensional shapes such as Calabi-Yau manifolds. However, there are still foundational issues to be handled in the study of mirror symmetry for Landau-Ginzburg models. Ideally, we would like to prove a form of Kontsevich's conjecture for Landau-Ginzburg models, but before we do so in general, we will need to understand the algebro-geometric aspects of Landau-Ginzburg models. This project aims to better understand this categorical point of view for Landau-Ginzburg models, proving various structural results on their analogue of the derived category of coherent sheaves above, known as the (matrix) factorisation category.
这是一个研究项目,旨在建立代数和几何结果,其灵感来自弦理论的对偶性。就在世纪之交之前,理论物理学为几何学提供了一种洞察力,导致了许多现代几何研究的成功。他们发现弦理论中的对偶性对高维几何的研究有着重要的意义和应用,使得关于某些六维空间几何的经典问题的答案变得容易获得。粗略地说,(经典)弦理论要为宇宙提供一个潜在的物理理论,它需要宇宙是10维的。其中4个维度是我们在生活中经历的标准3个空间维度和1个时间维度,其他6个维度是所谓的卡-丘流形。目前还不清楚到底有多少卡-丘流形,我们也用许多不同的方法来研究它们,但弦理论让我们在几何研究学科之间建立了深刻的联系。特别是,弦论中的对偶性指出,每个卡-丘流形都有一个“镜像”,它是另一个卡-丘流形,因此一个流形的各种几何和物理性质被封装在它的镜像的其他几何和物理性质中。这种现象在数学中被称为镜像对称。特别是,与卡-丘流形相关的辛几何中的困难计算和计算开放问题现在被编码在其镜像的代数几何中。在镜像对称开始时,这些代数几何计算要容易得多,然后它们被用作我们在辛几何中要证明的东西的指导原则。这使得枚举几何中的百年难题得以实现。1994年,菲尔兹奖获得者孔采维奇提出了镜像对称的一个理论上但完全数学化的版本,将辛几何编码在所谓的福谷范畴中,将代数几何编码在相干层的导出范畴中。在过去的三十年里,镜像对称已经扩展,现在可以看到镜像对称不仅仅是卡-丘流形之间的关系,而是更多的几何空间(例如,Fano流形,log Calabi-Yau簇)。然而,它也被扩展到奇点的研究。有趣的是,我们可以通过构造一个函数来模拟某些空间的几何形状,使得该函数沿原始空间沿着是奇异的。然后我们可以变形这个模型,仍然得到弦理论的物理模型。这是朗道-金兹伯格模型的一个例子。朗道-金兹伯格模型的镜像对称性已经在少数情况下建立,并且在研究经典的高维形状(如卡-丘流形)时表现出强大的功能。然而,在朗道-金兹伯格模型的镜像对称性研究中,仍然有一些基础问题需要解决。理想情况下,我们想证明Landau-Ginzburg模型的Kontsevich猜想的一种形式,但在我们这样做之前,我们需要理解Landau-Ginzburg模型的代数几何方面。这个项目旨在更好地理解Landau-Ginzburg模型的这种分类观点,证明上面的相干层的衍生类别(称为(矩阵)因子分解类别)的类似物的各种结构结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tyler Kelly其他文献

Investigating bee dietary preferences along a gradient of floral resources: how does resource use align with resource availability?
沿着花卉资源的梯度调查蜜蜂的饮食偏好:资源使用如何与资源可用性保持一致?
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Tyler Kelly;E. Elle
  • 通讯作者:
    E. Elle
Linked fluvial and aeolian processes fertilize Australian bioregions
相关的河流和风成过程为澳大利亚生物区提供了肥沃的土壤
  • DOI:
    10.1016/j.aeolia.2014.12.001
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    E. Bui;A. Chappell;Tyler Kelly;G. McTainsh
  • 通讯作者:
    G. McTainsh
Implications of a patent foramen ovale for environmental physiology and pathophysiology: do we know the ‘hole’ story?
环境生理学和病理生理学专利的含义:我们知道“洞”的故事吗?
  • DOI:
    10.1113/jp281108
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Lovering;Tyler Kelly;Kaitlyn G DiMarco;K. Bradbury;N. Charkoudian
  • 通讯作者:
    N. Charkoudian
Blunted hypoxic pulmonary vasoconstriction in apnoea divers
呼吸暂停潜水员缺氧性肺血管收缩减弱
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Tyler Kelly;Courtney V Brown;Mohini Bryant;R. Lord;T. Dawkins;Aimee L Drane;J. Futral;O. Barak;Tanja Dragun;M. Stembridge;Boris Spajić;Ivan Drviš;Joseph W. Duke;P. Ainslie;G. Foster;Ž. Dujić;A. Lovering
  • 通讯作者:
    A. Lovering
Closing the research-implementation gap using data science tools: a case study with pollinators of British Columbia
使用数据科学工具缩小研究与实施之间的差距:不列颠哥伦比亚省授粉昆虫的案例研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Guzman;Tyler Kelly;L. Morandin;L. M’Gonigle;E. Elle
  • 通讯作者:
    E. Elle

Tyler Kelly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tyler Kelly', 18)}}的其他基金

Open Mirror Geometry for Landau-Ginzburg Models
Landau-Ginzburg 模型的开放镜像几何结构
  • 批准号:
    MR/T01783X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Fellowship
Mirror Constructions: Develop, Unify, Apply
镜像结构:开发、统一、应用
  • 批准号:
    EP/S03062X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Research Grant
Bridging Frameworks via Mirror Symmetry
通过镜像对称桥接框架
  • 批准号:
    EP/N004922/2
  • 财政年份:
    2018
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Fellowship
Bridging Frameworks via Mirror Symmetry
通过镜像对称桥接框架
  • 批准号:
    EP/N004922/1
  • 财政年份:
    2015
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Fellowship
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1401446
  • 财政年份:
    2014
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Fellowship Award

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Standard Grant
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Continuing Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
  • 批准号:
    2342254
  • 财政年份:
    2024
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Standard Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
  • 批准号:
    2337178
  • 财政年份:
    2024
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 10.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了