Collaborative Research: Enabling Robust Learning with Conceptual Personalization Technologies

协作研究:利用概念个性化技术实现稳健学习

基本信息

  • 批准号:
    0835454
  • 负责人:
  • 金额:
    $ 14.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Personalized instruction ? instruction that targets individual students? unique learning needs and builds upon their prior knowledge ? is critical for supporting effective science learning. The primary goal in this project is to support robust learning with personalization strategies using natural language technologies. The project is a three-institution collaboration between the University of Colorado, the University Corporation for Atmospheric Research, and the University of Utah. It has two objectives: the technology objective is to create domain-independent techniques to create personalization algorithms, and the learning science objective is to measure the effect of these algorithms on learning. The project focuses on robust learning, i.e., learning the supports transfer and the promotion of meta-cognitive skills. The subject matter is earth science and biology. The proposed techonology would operate as follows. Firstly, the system uses state-of-the-art statistical natural language processing methods to automatically process learning resources (primarily texts) in order to create a domain knowledge map. This includes automatically identifying core concepts in a treatment of the subject matter. Secondly, during learning sessions, the system would analyze students' essays to dynamically construct a domain knowledge map of the students' responses (and an assessment of student understanding). Using graph matching techniques, the system evaluates the student's response, including determining what concepts were missing or misunderstood. Finally, the system uses recommendation engine methods to suggest web resources that could help the student understand the material.This project, by automating many of the processes to identify knowledge and key concepts, has the potential to transform learning. The system is independent of the domain of learning so it can be used for any area of science. The system also does not depend upon skilled teachers ? so it can be effectively used in under-served schools.
个性化指导?针对个别学生的指导?独特的学习需求,并建立在他们以前的知识?对支持有效的科学学习至关重要。 该项目的主要目标是使用自然语言技术通过个性化策略支持健壮的学习。该项目是科罗拉多大学、大学大气研究公司和犹他州大学之间的三个机构合作项目。它有两个目标:技术目标是创建独立于领域的技术,以创建个性化算法,而学习科学目标是测量这些算法对学习的影响。该项目的重点是强大的学习,即,学习支持迁移和元认知技能的提升。主题是地球科学和生物学。拟议的技术将按以下方式运作。首先,该系统使用最先进的统计自然语言处理方法来自动处理学习资源(主要是文本),以创建领域知识地图。这包括自动识别主题处理中的核心概念。其次,在学习过程中,系统将分析学生的文章,以动态构建学生回答的领域知识地图(以及学生理解的评估)。使用图形匹配技术,该系统评估学生的反应,包括确定哪些概念被遗漏或误解。最后,该系统使用推荐引擎的方法来建议网络资源,可以帮助学生理解的材料。这个项目,通过自动化的许多过程,以确定知识和关键概念,有可能改变学习。该系统独立于学习领域,因此可以用于任何科学领域。这个系统也不依赖于熟练的教师吗?因此,它可以有效地用于服务不足的学校。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kirsten Butcher其他文献

Kirsten Butcher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kirsten Butcher', 18)}}的其他基金

A Practice-Based Online Learning Environment for Scientific Inquiry with Digitized Museum Collections in Middle School Classrooms
中学课堂中数字化博物馆藏品的基于实践的科学探究在线学习环境
  • 批准号:
    1812844
  • 财政年份:
    2018
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Continuing Grant
Collaborative Project: Understanding Impact: A Scaling and Replication Study of the Curriculum Customization Service
合作项目:了解影响:课程定制服务的扩展和复制研究
  • 批准号:
    1043717
  • 财政年份:
    2010
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Is there an educational advantage to NSDL? Assessing impact on cognitive processes and learning outcomes during resource selection and use.
NSDL 有教育优势吗?
  • 批准号:
    0938041
  • 财政年份:
    2009
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332468
  • 财政年份:
    2024
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Continuing Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
  • 批准号:
    2311950
  • 财政年份:
    2023
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Standard Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
  • 批准号:
    2317826
  • 财政年份:
    2023
  • 资助金额:
    $ 14.56万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了