Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
基本信息
- 批准号:2311950
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As quantum computers consistently scale up with more qubits, the development of practical and real-world applications using quantum computing has become a crucial frontier for quantum information scientists and technologists, which benefits other scientists and end-users across a wide range of disciplines. Quantum learning, a combination of quantum computing and machine learning and also known as Variational Quantum Algorithm (VQA), is one of the most promising approaches to be applied to a variety of practical problems. Quantum learning is a hybrid quantum-classical protocol that optimizes parameters in a Variational Quantum Circuit (VQC) with a cost function using a classical training optimizer. However, the inherent noise on quantum devices brings severe deployability and portability issues, making the optimized VQCs suffer significant performance degradation in deploying or porting among different quantum computers. What is more, the noise on the quantum devices changes over time, known as unstable noise, fluctuating noise, or drift of noise, which prevents the reuse of VQCs on one quantum computer at different times and even misleads the learning to a non-optimal path when noise change during the VQC training process. This project aims to enable temporal-reliable quantum learning by generating fundamental understandings and practical approaches in quantum learning, uncertainty prediction, noise suppression, and system visualization. Outcomes are evaluated using quantum learning for scientific applications on the DoE-sponsored supercomputing centers that provide access to various commercial quantum computing resources. With the objective of facilitating practical quantum learning, this project uses a systematic and innovative approach to develop an integrated framework, which presents the novelty of the proposed research, practical value, and domain impacts: (1) developing a novel compression-based error adaptor to adjust the parameters and structure of VQC according to the fluctuating quantum noise, such that the VQC can effectively and efficiently adapt to the present quantum noise; (2) building an uncertainty predictor to quantify the deployability of a given pair of VQC and quantum processor, such that users can be aware of performance change; (3) designing a novel visualization tool with scalability to portray the impact of noise on the performance of a given VQC; and (4) the developed toolset is finally integrated into a scientific application, real-time earthquake detection, which can provide insights into identifying real-world tasks where quantum technologies may offer a promising solution. The education impacts of this project include the tutorials on the developed software tools to guide and encourage the domain researchers to leverage the advanced quantum computing cyberinfrastructure; the integration of research to the quantum summer program from the Potomac Quantum Innovation Center for high school seniors; and the development of new undergraduate and graduate courses for quantum workforce training.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着量子计算机不断扩展更多的量子比特,使用量子计算开发实际和现实世界的应用已经成为量子信息科学家和技术人员的一个重要前沿,这使其他科学家和终端用户受益于广泛的学科。量子学习是量子计算和机器学习的结合,也被称为变分量子算法(VQA),是应用于各种实际问题的最有前途的方法之一。量子学习是一种混合量子-经典协议,它使用经典训练优化器优化变分量子电路(VQC)中的参数。然而,量子设备上的固有噪声带来了严重的可部署性和可移植性问题,使得优化的VQC在不同量子计算机之间的部署或移植中遭受显著的性能下降。更重要的是,量子设备上的噪声会随着时间的推移而变化,称为不稳定噪声、波动噪声或噪声漂移,这会阻止在不同时间在一台量子计算机上重用VQC,甚至在VQC训练过程中噪声变化时将学习误导到非最佳路径。该项目旨在通过在量子学习、不确定性预测、噪声抑制和系统可视化方面产生基本理解和实用方法来实现时间可靠的量子学习。使用量子学习对能源部赞助的超级计算中心的科学应用进行评估,这些中心提供对各种商业量子计算资源的访问。为了促进实用的量子学习,该项目使用系统和创新的方法来开发一个综合框架,该框架展示了拟议研究的新奇,实用价值和领域影响:(1)提出了一种基于压缩的误差自适应器,根据量子噪声的涨落来调整VQC的参数和结构,使得VQC能够有效且高效地适应当前的量子噪声:(2)构建不确定性预测器以量化给定的VQC和量子处理器对的可部署性,使得用户能够意识到性能变化;(3)设计了一种新的可视化工具,具有可扩展性,以描绘噪声对给定VQC性能的影响;以及(4)所开发的工具集最终被集成到科学应用中,实时地震检测,这可以为识别量子技术可能提供有前途的解决方案的现实世界任务提供见解。该项目的教育影响包括开发软件工具的教程,以指导和鼓励领域研究人员利用先进的量子计算网络基础设施;研究与波托马克量子创新中心的量子夏季计划相结合;以及为量子劳动力培训开发新的本科生和研究生课程。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiang Guan其他文献
TQEA: Temporal Quantum Error Analysis
TQEA:时间量子误差分析
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Betis Baheri;Daniel T. Chen;B. Fang;S. Stein;V. Chaudhary;Y. Mao;Shuai Xu;Ang Li;Qiang Guan - 通讯作者:
Qiang Guan
Soft Error Resilience and Failure Recovery for Continuum Dynamics Applications
连续动态应用程序的软错误恢复和故障恢复
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Li Tan;M. Charest;Nathan Debardeleben;Qiang Guan;Ben Bergen - 通讯作者:
Ben Bergen
Differentiated Failure Remediation with Action Selection for Resilient Computing
通过弹性计算的操作选择进行差异化故障修复
- DOI:
10.1109/prdc.2015.42 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Song Huang;Song Fu;Nathan Debardeleben;Qiang Guan;Chengzhong Xu - 通讯作者:
Chengzhong Xu
Snails (Mollusca: Gastropoda) as potential surrogates of overall aquatic invertebrate assemblage in wetlands of Northeastern China
蜗牛(软体动物:腹足纲)作为中国东北湿地整个水生无脊椎动物群落的潜在替代品
- DOI:
10.1016/j.ecolind.2018.01.069 - 发表时间:
2018-07 - 期刊:
- 影响因子:6.9
- 作者:
Qiang Guan;Jiping Liu;Darold P. Batzer;Xianguo Lu;Haitao Wu - 通讯作者:
Haitao Wu
Efficient extracting of uncertain events using fuzzy logic from event stream
使用模糊逻辑从事件流中高效提取不确定事件
- DOI:
- 发表时间:
- 期刊:
- 影响因子:3.9
- 作者:
Qiang Guan;Na Li - 通讯作者:
Na Li
Qiang Guan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiang Guan', 18)}}的其他基金
CAREER: The Research of Noise-Aware Scheduling for Noisy Intermediate-Scale Quantum Systems
职业:噪声中尺度量子系统的噪声感知调度研究
- 批准号:
2238734 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
- 批准号:
2217021 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CyberTraining: Implementation: Small: Interactive and Integrated Training for Quantum Application Developers across Platforms
CyberTraining:实施:小型:针对跨平台量子应用程序开发人员的交互式综合培训
- 批准号:
2230111 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
OAC Core: Interpretable Resilience Analysis Platform for Scientific Workflow Applications
OAC Core:用于科学工作流程应用程序的可解释弹性分析平台
- 批准号:
2212465 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
复杂电子产品超精密加工及检测关键技术研究与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于合成生物学的动物底盘品种优化及中试应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
运用组学整合技术探索萆薢分清散联合化疗治疗晚期胰腺癌的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
九里香等提取物多靶向制剂抗肺癌的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
升血小板方治疗原发免疫性血小板减少症的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
八髎穴微波热疗在女性膀胱过度活动症治疗中的价值研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 miR-455-5p 介导的氧化应激机制探讨糖尿病视网膜病变中医分型治疗的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 UPLC-Q-TOF-MS/MS 分析的 异功散活性成分评价及提取工艺研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无创电针对于痉挛型双瘫脑 瘫患儿的有效性与安全性研究:一项随机 单盲前瞻性队列研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
弹压式手法与体外冲击波治疗肱骨外上髁炎的对比研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402947 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402946 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403088 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403090 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403399 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403089 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant