CAREER: Immersive Large-Scale Network Simulations

职业:沉浸式大规模网络模拟

基本信息

  • 批准号:
    0836408
  • 负责人:
  • 金额:
    $ 33.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-05-15 至 2012-02-29
  • 项目状态:
    已结题

项目摘要

The success of advancing technologies critical to designing future-generation high-performance global networks and reliable distributed applications hinges on the available tools that can effectively prototype test, and analyze new ideas. The project will enable advances in the area of high-performance modeling and simulation of large-scale networks. The research includes an investigation of the fundamental technologies that enable real-time large-scale network simulationsand the development of a real-time immersive network simulation environment. Real-time network simulation combines the advantages of both simulation and emulation by running simulation models that interact with the physical world. Immersive large-scale network simulation requires that the simulation not only capture important characteristics of the target global network, but also support seamless interactions with distributed applications in real time. The project is divided into three research thrusts: imprecise simulation, GPU co-simulation, and the development of the immersive network simulation environment. Imprecise simulation, extended from the imprecise computation technique originally designed for real-time systems, aims to achieve real-time performance of large-scale network simulations, by allowing the simulation to choose among models with different modeling representations and with variable computing requirements during run-time. GPU co-simulation exploits the computing resource of graphics processors, which are almost omnipresent on todays desktop computers and become more powerful than CPUs; certain numerical computations, such as the network background traffic calculation, can be offloaded to the graphics hardware, so that the CPUs can concentrate on more critical tasks for real-time simulation. An immersive network simulation environment will be developed based on the imprecise simulation and GPU co-simulation techniques, and will also include models of network protocols of alternative designs of the layered network structures.
对于设计下一代高性能全球网络和可靠的分布式应用程序至关重要的先进技术的成功取决于能够有效进行原型测试和分析新想法的可用工具。该项目将推动大规模网络高性能建模和仿真领域的进步。该研究包括对实现实时大规模网络仿真的基础技术的调查以及实时沉浸式网络仿真环境的开发。实时网络仿真通过运行与物理世界交互的仿真模型,结合了仿真和仿真的优点。沉浸式大规模网络仿真要求仿真不仅捕获目标全局网络的重要特征,而且支持与分布式应用程序的实时无缝交互。 该项目分为三个研究重点:不精确仿真、GPU联合仿真以及沉浸式网络仿真环境的开发。不精确仿真是从最初为实时系统设计的不精确计算技术延伸出来的,旨在通过允许仿真在运行时选择具有不同建模表示和可变计算需求的模型来实现大规模网络仿真的实时性能。 GPU 协同仿真利用了图形处理器的计算资源,图形处理器在当今的台式计算机上几乎无处不在,并且变得比 CPU 更强大;某些数值计算,例如网络后台流量计算,可以卸载到图形硬件,以便CPU可以专注于更关键的任务进行实时模拟。基于不精确仿真和GPU联合仿真技术,将开发沉浸式网络仿真环境,并且还将包括分层网络结构的替代设计的网络协议模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Liu其他文献

A High-Density Subthreshold SRAM with Data-Independent Bitline Leakage and Virtual Ground Replica Scheme
具有数据独立位线泄漏和虚拟接地副本方案的高密度亚阈值 SRAM
Lookahead revisited in wireless network simulations
无线网络模拟中重新审视前瞻
Advanced concepts in large-scale network simulation
大规模网络仿真的先进概念
Balanitis: An Unexpected Adverse Reaction to Pelvic Radiation or to Chemotherapy? Two Cases and a Review of the Literature
龟头炎:对盆腔放射或化疗的意外不良反应?
Performance Study of a Minimalistic Simulator on XSEDE Massively Parallel Systems
XSEDE 大规模并行系统上的简约模拟器的性能研究
  • DOI:
    10.1145/2616498.2616512
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rong Rong;J. Hao;Jason Liu
  • 通讯作者:
    Jason Liu

Jason Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Liu', 18)}}的其他基金

PARTNER: An AI/ML Collaborative for Southeast Florida Coastal Environmental Data and Modeling Center
合作伙伴:佛罗里达州东南部沿海环境数据和建模中心的人工智能/机器学习合作项目
  • 批准号:
    2331908
  • 财政年份:
    2023
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Continuing Grant
CC* Compute: RAPTOR - Reconfigurable Advanced Platform for Transdisciplinary Open Research
CC* 计算:RAPTOR - 用于跨学科开放研究的可重构高级平台
  • 批准号:
    2126253
  • 财政年份:
    2021
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Optimization of Memory Architectures: A Foundation Approach
合作研究:SHF:小型:内存架构优化:基础方法
  • 批准号:
    2008000
  • 财政年份:
    2020
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Standard Grant
EAGER: SwitchOn - Exploring and Strengthening US-Brazil Collaborations in Future Internet Research
EAGER:SwitchOn - 探索和加强美国与巴西在未来互联网研究方面的合作
  • 批准号:
    1443285
  • 财政年份:
    2014
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Standard Grant
CAREER: Immersive Large-Scale Network Simulations
职业:沉浸式大规模网络模拟
  • 批准号:
    0546712
  • 财政年份:
    2006
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Continuing Grant

相似海外基金

工芸表現学習のための没入型視覚化空間(Immersive visualization space)の開発と試行
学习工艺表达的沉浸式可视化空间的开发与试用
  • 批准号:
    24K06316
  • 财政年份:
    2024
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343619
  • 财政年份:
    2024
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Standard Grant
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
  • 批准号:
    10109165
  • 财政年份:
    2024
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Launchpad
Challenges in Immersive Audio Technology
沉浸式音频技术的挑战
  • 批准号:
    EP/X032914/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Research Grant
IRES Track I: Island Invasion Biology - Leveraging the Galapagos and Hawaiian Islands to provide immersive undergraduate research experiences.
IRES 轨道 I:岛屿入侵生物学 - 利用加拉帕戈斯群岛和夏威夷群岛提供沉浸式本科生研究体验。
  • 批准号:
    2245931
  • 财政年份:
    2024
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Standard Grant
SBIR Phase II: An immersive virtual reality platform for remote physical therapy and monitoring
SBIR 第二阶段:用于远程物理治疗和监控的沉浸式虚拟现实平台
  • 批准号:
    2304278
  • 财政年份:
    2024
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Cooperative Agreement
Challenges in Immersive Audio Technology
沉浸式音频技术的挑战
  • 批准号:
    EP/X032981/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Research Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343618
  • 财政年份:
    2024
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Standard Grant
Assist-as-Needed Ankle Assistance Strategy Integrating Immersive MR system for Ensuring Voluntary Effort and Stimulating Neurorepair during Post-Stroke Gait Training
按需协助踝关节辅助策略集成沉浸式 MR 系统,确保中风后步态训练期间的自愿努力并刺激神经修复
  • 批准号:
    24K21161
  • 财政年份:
    2024
  • 资助金额:
    $ 33.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mixed Reality Environment for Immersive Experience of Art and Culture
用于沉浸式艺术和文化体验的混合现实环境
  • 批准号:
    10106874
  • 财政年份:
    2024
  • 资助金额:
    $ 33.68万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了