CAREER: Advanced Computational Multi-Body Dynamics for Next Generation Simulation-Based Engineering

职业:下一代基于仿真的工程的高级计算多体动力学

基本信息

  • 批准号:
    0840442
  • 负责人:
  • 金额:
    $ 40.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-03-01 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

As the computer microprocessor industry rallies behind a new design paradigm that emphasizes massively parallel architectures, today?s Computational Multi-Body Dynamics methods are gradually becoming obsolete and ill-positioned to answer the ever growing challenges posed by Simulation-Based Engineering. This Career proposal is motivated by the opportunity to reshape the existing Computational Multi-Body Dynamics landscape through new simulation methods. Specifically, the developed methods will tackle complex dynamics applications from new algorithmic perspectives that draw on affordable high performance parallel computing hardware.From the motion of atoms to the flow of granular material (sand, gravel, etc.) and on to predicting/understanding/optimizing the dynamics of heavy duty machinery such as a 1,500 ton electric excavator, three efficiency barriers that currently limit the potential of Simulation-Based Engineering are identified as follows: (i) numerical solution methods are rooted in sequential algorithms, (ii) numerical methods do not scale to handle very large systems efficiently, and (iii) numerical integration methods are limited to very small integration step-sizes. Under this research, advanced numerical methods leveraging emerging massively parallel commodity computer hardware will be identified, investigated, and demonstrated to effectively overcome these efficiency barriers. Specifically, (a) relying on explicit numerical integration, an iterative solution framework will be investigated for its potential for parallel simulation, (b) drawing on a differential variational inequality approach, scalable complementarity methods will be investigated for their potential to use tens of thousands of parallel computational threads to solve billion body dynamics problems with frictional contact, and (c) relying on implicit numerical formulas, symplectic methods will be investigated for their potential for larger integration step-sizes in Molecular Dynamics simulation.If it is a domain decomposition technique, a multigrid methodology, or a new variational implicit integrator, the approaches investigated under this project ultimately draw on Applied Mathematics and leverage emerging trends in Computer Science to advance/accelerate discovery in Engineering. In specific economic terms, this research effort will (1) translate into immediate productivity gains in Simulation-Based Engineering as a result of existing technology transfer arrangements with several federal government and industry partners, and (2) assist NASA researchers with simulation technology required to design the next generation of Lunar and Mars rovers. In educational/outreach terms, this effort will (3) increase minority enrollment in the College of Engineering at the University of Wisconsin through an ongoing annual summer Science, Technology, Engineering, and Mathematics (STEM) program with clearly stated goals and success metrics, (4) promote a graduate/undergraduate Mechanical Engineering educational track at Wisconsin that emphasizes Applied Mathematics and Computer Science as fundamental building blocks in the technical formation of new Engineers, and (5) increase public awareness of the Computational Multi-Body Dynamics topic in particular and the potential of Applied Mathematics and Computer Science disciplines in general.
随着计算机微处理器行业在强调大规模并行架构的新设计范式背后的集会,今天?的计算多体动力学方法正逐渐变得过时和不适合回答基于仿真的工程所提出的日益增长的挑战。 这个职业建议的动机是有机会通过新的模拟方法重塑现有的计算多体动力学景观。 具体来说,开发的方法将从新的算法角度来解决复杂的动力学应用,这些算法利用负担得起的高性能并行计算硬件。以及预测/理解/优化重型机械(如1,500吨电动挖掘机)的动力学,目前限制基于仿真的工程潜力的三个效率障碍如下:(i)数值求解方法植根于序列算法,(ii)数值方法不能有效地扩展以处理非常大的系统,以及(iii)数值积分方法限于非常小的积分步长。 在这项研究中,利用新兴的大规模并行商品计算机硬件的先进数值方法将被识别,调查和证明,以有效地克服这些效率障碍。 具体而言,(a)依靠显式数值积分,将研究迭代求解框架的并行模拟潜力,(B)利用微分变分不等式方法,将研究可扩展互补方法的潜力,以使用数万个并行计算线程来解决具有摩擦接触的数十亿体动力学问题,(c)辛方法依赖于隐式数值公式,将研究其在分子动力学模拟中更大积分步长的潜力。如果它是区域分解技术,多重网格方法,或新的变分隐式积分器,本项目研究的方法最终借鉴了应用数学,并利用计算机科学的新兴趋势来推进/加速工程发现。 在具体的经济方面,这项研究工作将(1)转化为基于仿真的工程的直接生产力提高,这是与几个联邦政府和行业合作伙伴的现有技术转让安排的结果,(2)协助NASA研究人员设计下一代月球和火星漫游车所需的仿真技术。 在教育/推广方面,这一努力将(3)通过正在进行的年度夏季科学,技术,工程和数学(STEM)计划,增加威斯康星州大学工程学院的少数民族入学率,明确规定目标和成功指标,(4)促进毕业生/本科机械工程教育轨道在威斯康星州,强调应用数学和计算机科学作为基础建设在新的工程师的技术形成块,(5)提高公众意识的计算多体动力学的主题,特别是应用数学和计算机科学学科的潜力一般。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan Negrut其他文献

Linear Algebra Considerations for the Multi-Threaded Simulation of Mechanical Systems
  • DOI:
    10.1023/a:1024515521451
  • 发表时间:
    2003-08-01
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Dan Negrut
  • 通讯作者:
    Dan Negrut
Human-automated vehicle interactions: Voluntary driver intervention in car-following
人机交互车辆:在跟车过程中驾驶员的自愿干预
  • DOI:
    10.1016/j.trc.2024.104969
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Xinzhi Zhong;Yang Zhou;Amudha Varshini Kamaraj;Zhenhao Zhou;Wissam Kontar;Dan Negrut;John D. Lee;Soyoung Ahn
  • 通讯作者:
    Soyoung Ahn
Using high fidelity discrete element simulation to calibrate an expeditious terramechanics model in a multibody dynamics framework
使用高保真离散元模拟在多体动力学框架中校准一个快速的岩土力学模型
  • DOI:
    10.1007/s11044-024-10051-z
  • 发表时间:
    2025-01-22
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Yuemin Zhang;Junpeng Dai;Wei Hu;Dan Negrut
  • 通讯作者:
    Dan Negrut

Dan Negrut的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dan Negrut', 18)}}的其他基金

Collaborative Research: Frameworks: Simulating Autonomous Agents and the Human-Autonomous Agent Interaction
协作研究:框架:模拟自主代理和人机交互
  • 批准号:
    2209791
  • 财政年份:
    2022
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Differentiable and Expressive Simulators for Designing AI-enabled Robots
协作研究:用于设计人工智能机器人的可微分和富有表现力的模拟器
  • 批准号:
    2153855
  • 财政年份:
    2022
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements:Software:NSCI: Chrono - An Open-Source Simulation Platform for Computational Dynamics Problems
合作研究:Elements:Software:NSCI: Chrono - 计算动力学问题的开源仿真平台
  • 批准号:
    1835674
  • 财政年份:
    2019
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
Using Mixed Discrete-Continuum Representations to Characterize the Dynamics of Large Many-Body Dynamics Problems
使用混合离散连续体表示来表征大型多体动力学问题的动力学
  • 批准号:
    1635004
  • 财政年份:
    2016
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
GOALI: Computational Multibody Dynamics: Addressing Modeling and Simulation Limitations in Problems with Friction and Contact
GOALI:计算多体动力学:解决摩擦和接触问题中的建模和仿真限制
  • 批准号:
    1362583
  • 财政年份:
    2014
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
SI2-SSE Collaborative Research: SPIKE-An Implementation of a Recursive Divide-and-Conquer Parallel Strategy for Solving Large Systems of Linear Equations
SI2-SSE 合作研究:SPIKE——求解大型线性方程组的递归分治并行策略的实现
  • 批准号:
    1147337
  • 财政年份:
    2012
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Simulation of Multibody Dynamics. Leveraging New Numerical Methods and Multiprocessor Capabilities
合作研究:多体动力学模拟。
  • 批准号:
    0700191
  • 财政年份:
    2007
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant

相似国自然基金

面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
  • 批准号:
    61201232
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LTE-Advanced中继网络关键技术研究
  • 批准号:
    61171096
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
IMT-Advanced协作中继网络中的网络编码研究
  • 批准号:
    61040005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
  • 批准号:
    61001116
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向IMT-Advanced的移动组播关键技术研究
  • 批准号:
    61001071
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: ACRES: Advanced Computational Research Experience for Students
REU 网站:ACRES:学生的高级计算研究体验
  • 批准号:
    2349002
  • 财政年份:
    2024
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
Using advanced genomic and computational approaches to discover and characterize novel genetic variants in neurodevelopmental disorders.
使用先进的基因组和计算方法来发现和表征神经发育障碍中的新遗传变异。
  • 批准号:
    491213
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Fellowship Programs
Development of an advanced search system for documents in archives by integrating computational representations of information useful for searching documents
通过集成可用于搜索文档的信息的计算表示,开发档案中文档的高级搜索系统
  • 批准号:
    23KK0005
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Understanding functional performance in bird skulls: advanced computational modelling to investigate cranial biomechanics and kinesis
了解鸟类头骨的功能表现:研究颅骨生物力学和运动的先进计算模型
  • 批准号:
    BB/X014479/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Research Grant
CyberTraining: Pilot: Fostering Computational Excellence (FOCEX): Addressing the Disconnect between Advanced CyberInfrastructure and Educational Preparedness
网络培训:试点:促进卓越计算 (FOCEX):解决先进网络基础设施与教育准备之间的脱节
  • 批准号:
    2320943
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 1: Advanced cloud-based Data- and Visualization-Integrated Simulation EnviRonment (ADVISER) to Advance Computational Glaciology
合作研究:GEO OSE Track 1:先进的基于云的数据和可视化集成模拟环境 (ADVISER),以推进计算冰川学
  • 批准号:
    2324737
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 1: Advanced cloud-based Data- and Visualization-Integrated Simulation EnviRonment (ADVISER) to Advance Computational Glaciology
合作研究:GEO OSE Track 1:先进的基于云的数据和可视化集成模拟环境 (ADVISER),以推进计算冰川学
  • 批准号:
    2324735
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
Advanced Colonoscopy Training Developed Through Manikin Sensorization and Computational Optimization Modeling
通过人体模型传感和计算优化建模开发的高级结肠镜检查培训
  • 批准号:
    10719474
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
  • 项目类别:
Harnessing Quantum Computational Methods, Tensor Networks, and Machine Learning for Advanced Simulations in Quantum Field Theories
利用量子计算方法、张量网络和机器学习进行量子场论的高级模拟
  • 批准号:
    2876830
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Studentship
Collaborative Research: GEO OSE Track 1: Advanced cloud-based Data- and Visualization-Integrated Simulation EnviRonment (ADVISER) to Advance Computational Glaciology
合作研究:GEO OSE Track 1:先进的基于云的数据和可视化集成模拟环境 (ADVISER),以推进计算冰川学
  • 批准号:
    2324736
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了