Understanding functional performance in bird skulls: advanced computational modelling to investigate cranial biomechanics and kinesis
了解鸟类头骨的功能表现:研究颅骨生物力学和运动的先进计算模型
基本信息
- 批准号:BB/X014479/1
- 负责人:
- 金额:$ 104.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Birds are well known for having a huge variety of beak shapes and sizes; a feature that is widely believed to be responsible for their evolutionary success. What is less well known is that bird beaks are incredibly mobile: when opening their mouths, birds don't just lower their jaws, but raise the upper beak as well using a flexible hinge region just behind the nostrils. This hinge presents something of a conundrum, because a flexible skull should be less good at turning muscle force into biting force. Our research aims to test several ideas based on mechanics about why the hinge evolved. Perhaps a hinged skull allows the beak to open wider, without over-stretching birds' jaw muscles? Or allows dangerously high forces generated in the beak to be absorbed before they can reach the brain? Perhaps movement in the skull changes the leverage of the jaw muscles to make them more efficient? Or maybe the hinge is simply a side-effect of thinning down the bones to reduce weight as birds evolved away from their heavy, dinosaur ancestors? These ideas are rarely explored because the moving parts are difficult to see without harming the birds. Our research aims to change this by building advanced computer models of the movement in the skull during bird feeding, and using them to test ideas that would be impossible or unethical to test on living animals; for example, in the computer we can "turn off" certain muscles, or "lock" the hinge so that it can't move. We will use 3D x-rays ("CT scans") of bird specimens donated by museums to rebuild the skull and muscles inside a computer, and analyse them using engineering methods ("finite element analysis" and "multibody dynamics analysis") designed for testing the performance of man-made structures like bridges and cars. We will also produce a database of properties of bird bones, muscles, and hinge anatomy, which will be shared online along with the models for other researchers, museums, and teachers to use. A critical step in this process is validating the computer models, to make sure that they are producing numbers that are realistic and reliable. Inside the CT scanner, we will apply forces to the beaks of our museum-donated specimens to mimic biting. By taking a scan before and after the force is applied, we will be able to calculate how much deformation has occurred in the bones and compare this to our computer models to verify their accuracy. Using the CT scanner to measure this deformation represents a major advancement, because for the first time we will be able to measure the motion and deformation in 3D through the whole structure, instead of just on the surface over small areas. We will also measure the bite force of the same species of living birds by having them bite on a small pressure sensor. At the same time, we will film the birds biting to track the motion and deformation of the beak. These motion and bite force measurements will be used to validate the multibody dynamics models, which will then feed back into the finite element models to simulate skull deformation during actual feeding. Not only will the validated models allow us to test the evolutionary ideas outlined above, but they will give us vital information about how to best model several anatomical features that are characteristic of, but not exclusive to birds, including: ultra-thin bones; complicated bone shapes; skulls made from multiple materials; and moving joints within the skull. With this knowledge, we will not only gain insight into the evolutionary story of bird beaks, but we be able to advise others on best practices for computer models that can reduce, and hopefully ultimately replace, the need for invasive animal testing.
众所周知,鸟类有各种各样的喙形状和大小;这一特征被广泛认为是它们进化成功的原因。但鲜为人知的是,鸟喙的移动的能力令人难以置信:当张开嘴时,鸟不仅会放下下巴,还会利用鼻孔后面的灵活铰链区抬起上喙。这个铰链是一个难题,因为一个灵活的头骨应该不太善于将肌肉力量转化为咬合力。我们的研究旨在测试几个基于力学的关于铰链进化原因的想法。也许一个铰接的头骨可以让喙张开得更大,而不会过度拉伸鸟类的下巴肌肉?或者让鸟喙中产生的危险的高力量在到达大脑之前被吸收?也许头骨的运动改变了下颌肌肉的杠杆作用,使它们更有效率?又或者,铰链只是鸟类从它们笨重的恐龙祖先进化而来,为了减轻体重而使骨骼变薄的副作用?这些想法很少被探索,因为运动的部分很难在不伤害鸟类的情况下看到。我们的研究旨在通过建立鸟类喂养过程中头骨运动的先进计算机模型来改变这一点,并使用它们来测试在活体动物身上进行测试是不可能或不道德的想法;例如,在计算机中,我们可以“关闭”某些肌肉,或者“锁定”铰链,使其无法移动。我们将使用博物馆捐赠的鸟类标本的3D X光(“CT扫描”)在计算机中重建头骨和肌肉,并使用工程方法(“有限元分析”和“多体动力学分析”)对其进行分析,这些方法旨在测试桥梁和汽车等人造结构的性能。我们还将制作一个鸟类骨骼、肌肉和铰链解剖特性的数据库,该数据库将与其他研究人员、博物馆和教师使用的模型一起沿着在线共享。这个过程中的关键一步是验证计算机模型,以确保它们产生的数字是真实可靠的。在CT扫描仪内,我们将对博物馆捐赠标本的喙施加力以模拟咬合。通过在施加力之前和之后进行扫描,我们将能够计算骨骼中发生了多少变形,并将其与我们的计算机模型进行比较,以验证其准确性。使用CT扫描仪测量这种变形代表了一个重大进步,因为我们将首次能够通过整个结构测量3D运动和变形,而不仅仅是在小区域的表面上。我们还将通过让它们咬在一个小的压力传感器上来测量同一物种的活鸟的咬合力。同时,我们将拍摄鸟类咬的过程,以跟踪喙的运动和变形。这些运动和咬合力测量将用于验证多体动力学模型,然后将其反馈到有限元模型中,以模拟实际喂养期间的颅骨变形。经过验证的模型不仅可以让我们测试上面概述的进化思想,而且还可以为我们提供有关如何最好地模拟鸟类特有但不限于鸟类的几个解剖特征的重要信息,包括:超薄骨骼;复杂的骨骼形状;由多种材料制成的头骨;以及头骨内的移动关节。有了这些知识,我们不仅可以深入了解鸟喙的进化故事,还可以为其他人提供计算机模型的最佳实践建议,这些模型可以减少并有望最终取代侵入性动物测试的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jen Bright其他文献
Jen Bright的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Got2基因对浆细胞样树突状细胞功能的调控及其在系统性红斑狼疮疾病中的作用研究
- 批准号:82371801
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
利用CRISPR内源性激活Atoh1转录促进前庭毛细胞再生和功能重建
- 批准号:82371145
- 批准年份:2023
- 资助金额:46.00 万元
- 项目类别:面上项目
SMC5-NSMCE2功能异常激活APSCs中p53/p16衰老通路导致脂肪萎缩和胰岛素抵抗的机制研究
- 批准号:82371873
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
- 批准号:82371373
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
HK2乳酰化修饰介导巨噬细胞功能障碍在脓毒症中的作用及机制
- 批准号:82372160
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
LTB4/BLT1轴调控NLRP3炎症小体对糖尿病认知功能障碍的作用研究
- 批准号:82371213
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
- 批准号:82372328
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
浸润特性调制的统计热力学研究
- 批准号:21173271
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the neurodevelopmental effects of youth tackle football participation
了解青少年参与橄榄球运动对神经发育的影响
- 批准号:
10742262 - 财政年份:2023
- 资助金额:
$ 104.01万 - 项目类别:
A mechanistic understanding of treatment-related outcomes of sleep disordered breathing using functional near infrared spectroscopy
使用功能性近红外光谱从机制上理解睡眠呼吸障碍的治疗相关结果
- 批准号:
10565985 - 财政年份:2023
- 资助金额:
$ 104.01万 - 项目类别:
Understanding how Powered Componentry Impacts K2-Level Transfemoral Amputee Gait
了解动力组件如何影响 K2 级经股截肢者步态
- 批准号:
10585944 - 财政年份:2023
- 资助金额:
$ 104.01万 - 项目类别:
Understanding and Targeting the Pathophysiology of Youth-onset Type 2 Diabetes - Biostatistics Research Center
了解并针对青年发病 2 型糖尿病的病理生理学 - 生物统计学研究中心
- 批准号:
10583114 - 财政年份:2023
- 资助金额:
$ 104.01万 - 项目类别:
Understanding Amyloid Pathology - Multiomic Activity Imaging of Plaque Formation Dynamics (AmyMAP)
了解淀粉样蛋白病理学 - 斑块形成动力学的多组学活性成像 (AmyMAP)
- 批准号:
10693962 - 财政年份:2022
- 资助金额:
$ 104.01万 - 项目类别:
Understanding the Mechanical Underpinnings of Rotator Cuff Tear and Surgical Repair
了解肩袖撕裂和手术修复的机械基础
- 批准号:
10536970 - 财政年份:2022
- 资助金额:
$ 104.01万 - 项目类别:
Understanding Reasons for Underdiagnosis and Undertreatment of Primary Hyperparathyroidism in the VA
了解退伍军人管理局原发性甲状旁腺功能亢进症诊断不足和治疗不足的原因
- 批准号:
10425603 - 财政年份:2022
- 资助金额:
$ 104.01万 - 项目类别:
Dynamic approaches to understanding social cognitive aging: A social network neuroscience approach
理解社会认知衰老的动态方法:社交网络神经科学方法
- 批准号:
10342805 - 财政年份:2022
- 资助金额:
$ 104.01万 - 项目类别:
From Molecules to Behavior: Understanding How Aging Impacts Entorhinal-based Navigation
从分子到行为:了解衰老如何影响基于内嗅的导航
- 批准号:
10786033 - 财政年份:2022
- 资助金额:
$ 104.01万 - 项目类别:
Understanding Amyloid Pathology - Multiomic Activity Imaging of Plaque Formation Dynamics (AmyMAP)
了解淀粉样蛋白病理学 - 斑块形成动力学的多组学活性成像 (AmyMAP)
- 批准号:
10516489 - 财政年份:2022
- 资助金额:
$ 104.01万 - 项目类别: