SGER: Neural-Network-Based Adaptive Dynamic Programming for Maximizing Survival Probabilities

SGER:基于神经网络的自适应动态规划,用于最大化生存概率

基本信息

项目摘要

Abstract Proposal Number: 0841055Proposal Title: Neural-Network-Based Adaptive Dynamic Programming for Maximizing Survival ProbabilitiesPI Name: Abhijit GosaviPI Institution: Missouri University of Science and TechnologyMost previous work on optimal control and adaptive dynamic programming (ADP) has focused on a kind of best-case optimization, where the system to be controlled is stable and the goal is simply to maximize benefits or minimize costs. This PI has been a leader in the small but important area of risk-sensitive ADP, which still aims to maximize benefits but tries to find less risky strategies for doing so. In this new work, the PI proposes to develop new methods aimed at the worst case situation, where stability or survival can not be guaranteed, and the optimization problem is to maximize the probability of survival. This is a very important class of problems. In addition, he plans to bridge the gap between the decision, management and risk community, where he has worked so far, and the engineering ADP community, by developing new software tools that can apply ADP efficiently to problems with a mix of discrete and continuous variables.Intellectual merit of proposal: This would be the first work to apply ADP (or at least continuous-variable ADP) to an extremely important class of problems. The challenging of maximizing a probability of survival is very important, for example, in trying to understand what brains do. Risk-sensitive ADP (RSADP) will be applied for the first time to the emerging class of ADP methods capable of efficiently coping with discrete and continuous variables at the same time.Broad impact of proposal: New tools in MatLab for this kind of optimization method could be of enormous strategic importance to the development of the entire ADP field. This could also be of more than usual benefit to the PI and to the area he has tried to pioneer at this stage of his career. The results of this project will build the foundation for studying RSADP on numerous problems in engineering where ADP can be used: routing of vehicles, maintenance of structures (especially in the face of risky natural disasters), revenue management in airlines, and supply chains of manufactured products.
摘要提案编号:0841055提案名称:Abhijit GosaviPI机构:密苏里科技大学以前关于最优控制和自适应动态规划(ADP)的大部分工作都集中在一种最佳情况优化上,其中被控制的系统是稳定的,目标是简单地最大化收益或最小化成本。在风险敏感型ADP这一虽小但很重要的领域,该项目一直处于领先地位。ADP的目标仍然是实现利益最大化,但试图找到风险较小的策略。在这项新工作中,PI提出开发针对最坏情况的新方法,在这种情况下,稳定性或生存无法保证,优化问题是最大化生存概率。这是一类非常重要的问题。此外,他计划通过开发新的软件工具,将ADP有效地应用于离散变量和连续变量混合的问题,弥合决策、管理和风险社区与工程ADP社区之间的差距。建议的智力价值:这将是第一个将ADP(或至少是连续变量ADP)应用于一类极其重要的问题的工作。最大化生存概率的挑战是非常重要的,例如,在试图了解大脑的功能时。风险敏感ADP (RSADP)将首次应用于能够同时有效处理离散变量和连续变量的新兴ADP方法。提案的广泛影响:MatLab中针对这种优化方法的新工具可能对整个ADP领域的发展具有巨大的战略意义。这对PI和他在职业生涯的这个阶段试图开拓的领域来说,也可能比平时更有好处。这个项目的结果将为研究RSADP在工程中的许多问题奠定基础,这些问题可以使用ADP:车辆路线,结构维护(特别是在面临危险的自然灾害时),航空公司的收入管理和制造产品的供应链。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abhijit Gosavi其他文献

Approximate Policy Iteration for Markov Control Revisited
  • DOI:
    10.1016/j.procs.2012.09.036
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Abhijit Gosavi
  • 通讯作者:
    Abhijit Gosavi
Semi-Markov adaptive critic heuristics with application to airline revenue management
  • DOI:
    10.1007/s11768-011-0161-9
  • 发表时间:
    2011-07-19
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Ketaki Kulkarni;Abhijit Gosavi;Susan Murray;Katie Grantham
  • 通讯作者:
    Katie Grantham
A simulation-based digital twin for data-driven maintenance scheduling of risk-prone production lines via actor critics

Abhijit Gosavi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abhijit Gosavi', 18)}}的其他基金

Collaborative Research: Continuous-State Reinforcement Learning for Remanufacturing
协作研究:再制造的连续状态强化学习
  • 批准号:
    2027452
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ITR/AP: COLLABORATIVE RESEARCH: A Simulation Based Computational Approach using Machine Learning to Study Stochastic Business Games
ITR/AP:协作研究:使用机器学习研究随机商业博弈的基于模拟的计算方法
  • 批准号:
    0341702
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ITR/AP: COLLABORATIVE RESEARCH: A Simulation Based Computational Approach using Machine Learning to Study Stochastic Business Games
ITR/AP:协作研究:使用机器学习研究随机商业博弈的基于模拟的计算方法
  • 批准号:
    0114007
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
  • 批准号:
    2332060
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
  • 批准号:
    23K24829
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
A Neural Network Management and Distribution System for Providing Super Multi-class Recognition Capability in Real Space
一种提供真实空间超多类别识别能力的神经网络管理与分发系统
  • 批准号:
    23K11120
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research on neural network reconstruction and functional recovery after stroke
脑卒中后神经网络重建及功能恢复的基础研究
  • 批准号:
    23K10454
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deepening Graph Neural Network Technology
深化图神经网络技术
  • 批准号:
    23H03451
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
  • 批准号:
    2308530
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了