Collaborative Research: Continuous-State Reinforcement Learning for Remanufacturing

协作研究:再制造的连续状态强化学习

基本信息

项目摘要

This award will contribute to the national prosperity and U.S. manufacturing competitiveness by developing new reinforcement learning (a subfield of artificial intelligence) methods to address inventory-control problems arising in remanufacturing industry. Remanufacturing is a product-management manufacturing process that aims to reduce the energy consumption and carbon footprint of traditional manufacturing. Effective production/inventory management to match the supply with the demand is a key element to the success of remanufacturing industry. However, the complexity of such problems and the uncertainties involved in the remanufacturing process make the conventional production planning methods difficult to apply. The resulting algorithms and tools will be fully tested using real-world data collected from the industry and are expected to achieve significant savings in raw materials and energy resources, leading to practical management policies of industrial interest. The PIs will involve both graduate and undergraduate students in this research and incorporate case studies into the advanced courses taught at different institutions.This research will be based on a fusion of techniques from reinforcement learning and the field of simulation optimization. Through novel adaptations of the-state-of-the-art variance reduction and function approximation techniques from simulation optimization, the PIs will investigate a new class of learning techniques especially tailored to remanufacturing decision-making problems. These include an extension of classical Q-learning for solving continuous-state semi-Markov decision processes and more general gradient-free actor-critic-like algorithms that overcome the local convergence of existing approaches. The algorithms developed will be studied for their theoretical properties such as convergence and performance consistency, and then assessed and validated on remanufacturing simulation models built on real-world data to investigate their practical impact.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将通过开发新的强化学习(人工智能的一个子领域)方法来解决再制造行业中出现的库存控制问题,为国家繁荣和美国制造业竞争力做出贡献。再制造是一种产品管理制造过程,旨在减少传统制造业的能源消耗和碳足迹。有效的生产/库存管理以匹配供应与需求是再制造行业成功的关键因素。然而,这些问题的复杂性和再制造过程中所涉及的不确定性使得传统的生产计划方法难以应用。 由此产生的算法和工具将使用从行业中收集的真实数据进行全面测试,预计将大幅节省原材料和能源,从而制定出符合行业利益的实用管理政策。 PI将让研究生和本科生参与这项研究,并将案例研究纳入不同机构教授的高级课程中。这项研究将基于强化学习和仿真优化领域的融合技术。通过对仿真优化中最先进的方差减小和函数逼近技术的新适应,PI将研究一类新的学习技术,特别是针对再制造决策问题。这些包括经典Q学习的扩展,用于解决连续状态半马尔可夫决策过程和更一般的无梯度的演员评论家算法,克服了现有方法的局部收敛。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abhijit Gosavi其他文献

Approximate Policy Iteration for Markov Control Revisited
  • DOI:
    10.1016/j.procs.2012.09.036
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Abhijit Gosavi
  • 通讯作者:
    Abhijit Gosavi
Semi-Markov adaptive critic heuristics with application to airline revenue management
  • DOI:
    10.1007/s11768-011-0161-9
  • 发表时间:
    2011-07-19
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Ketaki Kulkarni;Abhijit Gosavi;Susan Murray;Katie Grantham
  • 通讯作者:
    Katie Grantham
A simulation-based digital twin for data-driven maintenance scheduling of risk-prone production lines via actor critics

Abhijit Gosavi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abhijit Gosavi', 18)}}的其他基金

SGER: Neural-Network-Based Adaptive Dynamic Programming for Maximizing Survival Probabilities
SGER:基于神经网络的自适应动态规划,用于最大化生存概率
  • 批准号:
    0841055
  • 财政年份:
    2008
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
ITR/AP: COLLABORATIVE RESEARCH: A Simulation Based Computational Approach using Machine Learning to Study Stochastic Business Games
ITR/AP:协作研究:使用机器学习研究随机商业博弈的基于模拟的计算方法
  • 批准号:
    0341702
  • 财政年份:
    2003
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
ITR/AP: COLLABORATIVE RESEARCH: A Simulation Based Computational Approach using Machine Learning to Study Stochastic Business Games
ITR/AP:协作研究:使用机器学习研究随机商业博弈的基于模拟的计算方法
  • 批准号:
    0114007
  • 财政年份:
    2001
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Collaborative Research: IIBR Instrumentation: A continuous metabolite sensor for lab and field studies
合作研究:IIBR Instrumentation:用于实验室和现场研究的连续代谢物传感器
  • 批准号:
    2324717
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
  • 批准号:
    2401415
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
  • 批准号:
    2247880
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Building A Cybersecurity Mindset Through Continuous Cross-module Learning
协作研究:通过持续的跨模块学习建立网络安全心态
  • 批准号:
    2315489
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Building A Cybersecurity Mindset Through Continuous Cross-module Learning
协作研究:通过持续的跨模块学习建立网络安全心态
  • 批准号:
    2315490
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Continuous Integration Workflows
协作研究:SaTC:核心:中:确保持续集成工作流程的安全
  • 批准号:
    2247686
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
  • 批准号:
    2247881
  • 财政年份:
    2023
  • 资助金额:
    $ 16.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了