CAREER: Efficient Computation in the Physical World

职业:物理世界的高效计算

基本信息

  • 批准号:
    0844626
  • 负责人:
  • 金额:
    $ 57.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Quantum computing is a scientific field that combines some of the deepest intellectual concerns of computer science and physics. Ultimately, we want to know: what is and is not feasibly computable in the physical universe? After fifteen years of effort, quantum computing theory seems to have reached a point where further progress will necessarily entail progress in classical computing theory. The proposed research embraces this with concrete ideas for advancing both fields and will deepen the connections between quantum computing and frontier topics in classical complexity theory.This research tackles some of the hardest "barrier problems" about the power of classical and quantum computers. Examples of such problems include: how large is the class of problems that admit efficient quantum algorithms? Can we obtain evidence that this class lies outside the entire "polynomial hierarchy" of classical computation---which, loosely speaking, would imply that quantum computers could solve certain problems much faster than classical computers could even check the answers? Are there "unstructured" problems that quantum computers can solve exponentially faster than classical computers, in addition to "structured" problems such as finding the period of a periodic function (the heart of Shor's factoring algorithm)? Can we go beyond the idealized "black-box model" that encompasses almost everything complexity theorists currently know about the power of quantum computers, to obtain "non-relativizing results" that exploit the structure of quantum circuits? Can we better understand the obstacles to progress on P versus NP and related questions?
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。量子计算是一个科学领域,结合了计算机科学和物理学的一些最深层次的智力问题。最终,我们想知道:在物理宇宙中,什么是可计算的,什么是不可计算的? 经过15年的努力,量子计算理论似乎已经达到了一个点,进一步的进展必然会带来经典计算理论的进步。该研究计划包含了推进这两个领域的具体想法,并将深化量子计算与经典复杂性理论前沿课题之间的联系。这项研究解决了一些关于经典和量子计算机能力的最困难的“障碍问题”。这样的问题的例子包括:有多大的类的问题,承认有效的量子算法?我们能否获得证据,证明这个类位于经典计算的整个“多项式层次”之外--除了找到周期函数的周期(Shor因子分解算法的核心)等“结构化”问题之外,量子计算机是否可以以指数级的速度解决“非结构化”问题?我们能否超越理想化的“黑箱模型”,获得利用量子电路结构的“非相对化结果”?我们能否更好地理解在P与NP及相关问题上取得进展的障碍?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Aaronson其他文献

73. Efficacy of Transcranial Direct Current Stimulation in Unipolar and Bipolar Depression: Results from an International Randomized Controlled Trial
  • DOI:
    10.1016/j.biopsych.2017.02.084
  • 发表时间:
    2017-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Colleen Loo;Sarah Lisanby;Mustafa Husain;William McDonald;Scott Aaronson;John O’Reardon;Donel Martin;Angelo Alonzo;Shawn McClintock;Cynthia Shannon Weickert
  • 通讯作者:
    Cynthia Shannon Weickert
The impact of TMS on symptomatology in Major Depressive Disorder: What is being changed?
经颅磁刺激对重性抑郁症症状的影响:什么发生了改变?
  • DOI:
    10.1016/j.brs.2024.12.299
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Harold Sackeim;Scott Aaronson;Linda Carpenter;Todd Hutton
  • 通讯作者:
    Todd Hutton
Near invariance of the hypercube
  • DOI:
    10.1007/s11856-016-1291-z
  • 发表时间:
    2016-01-07
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Scott Aaronson;Hoi Nguyen
  • 通讯作者:
    Hoi Nguyen
The profile of symptom change with Transcranial Magnetic Stimulation for Major Depressive Disorder
经颅磁刺激治疗重度抑郁症的症状变化特征
  • DOI:
    10.1016/j.brs.2024.12.626
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Todd Hutton;Scott Aaronson;Linda Carpenter;Kenneth Pages;Harold Sackeim
  • 通讯作者:
    Harold Sackeim
Comparison of Two Transcranial Magnetic Stimulation (TMS) Treatment Protocols From a Large Clinical Outcomes Registry
  • DOI:
    10.1016/j.biopsych.2020.02.960
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Scott Aaronson;Linda Carpenter;Todd Hutton;Miriam Mina;Kenneth Pages;Sarah Verdoliva;W. Scott West;Harold A. Sackeim
  • 通讯作者:
    Harold A. Sackeim

Scott Aaronson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott Aaronson', 18)}}的其他基金

2012 Waterman Award
2012年沃特曼奖
  • 批准号:
    1249349
  • 财政年份:
    2012
  • 资助金额:
    $ 57.87万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0403009
  • 财政年份:
    2004
  • 资助金额:
    $ 57.87万
  • 项目类别:
    Fellowship Award

相似海外基金

CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
  • 批准号:
    2340095
  • 财政年份:
    2024
  • 资助金额:
    $ 57.87万
  • 项目类别:
    Continuing Grant
CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
  • 批准号:
    2338159
  • 财政年份:
    2024
  • 资助金额:
    $ 57.87万
  • 项目类别:
    Continuing Grant
Research on Computable Analysis and Verification of Efficient Exact Real Computation
高效精确实数计算的可计算分析与验证研究
  • 批准号:
    24K20735
  • 财政年份:
    2024
  • 资助金额:
    $ 57.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Efficient Computation of Generalized Persistence Diagrams
广义持久图的高效计算
  • 批准号:
    2324632
  • 财政年份:
    2023
  • 资助金额:
    $ 57.87万
  • 项目类别:
    Continuing Grant
CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration Analysis
职业:用于电网规模储能控制、竞价和集成分析的计算高效算法
  • 批准号:
    2239046
  • 财政年份:
    2023
  • 资助金额:
    $ 57.87万
  • 项目类别:
    Continuing Grant
Efficient Secure Multi-Party Computation Framework for Privacy-Preserving Machine Learning
用于保护隐私的机器学习的高效安全多方计算框架
  • 批准号:
    22KF0098
  • 财政年份:
    2023
  • 资助金额:
    $ 57.87万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CIF: Small: Generic Building Blocks of Communication-efficient Computation Networks - Fundamental Limits
CIF:小型:通信高效计算网络的通用构建块 - 基本限制
  • 批准号:
    2221379
  • 财政年份:
    2023
  • 资助金额:
    $ 57.87万
  • 项目类别:
    Standard Grant
Efficient algorithms for the symbolic computation of matrices
矩阵符号计算的高效算法
  • 批准号:
    RGPIN-2020-06746
  • 财政年份:
    2022
  • 资助金额:
    $ 57.87万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating bio-inspired architectures for efficient computation
研究仿生架构以实现高效计算
  • 批准号:
    2894696
  • 财政年份:
    2022
  • 资助金额:
    $ 57.87万
  • 项目类别:
    Studentship
Towards Improved Understanding and Efficient Utilization of Depthwise Computation in Modern Neural Networks
提高对现代神经网络深度计算的理解和有效利用
  • 批准号:
    577088-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 57.87万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了