CAREER: Linear Matrix Inequality Representations in Optimization

职业:优化中的线性矩阵不等式表示

基本信息

  • 批准号:
    0844775
  • 负责人:
  • 金额:
    $ 50.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This proposal investigates the linear matrix inequality representations of convex sets and their applications in optimization problems. The work involves different kinds of mathematical tools like algebraic geometry, convex analysis, differential geometry, numerical analysis, optimization theory, and real algebra. The investigator not only studies the fundamental mathematics on the scope and depth of linear matrix inequality representability, but also work on designing new algorithms and software solving hard optimization problems.The following five main topics will be focused in this project: linear matrix inequality representations of rigid convex sets, semidefinite programming representations of convex semialgebraic sets, second order cone programming representations of convex semialgebraic sets, semidefinite programming representations of nonnegative multivariate polynomials, and linear matrix inequality methods for solving nonconvex optimization problems and polynomial systems. A basic problem of science and engineering is finding a global minimum of a function of many variables. As a metaphor one might think of a complicated terrain of mountains and valleys which stretches for hundreds of miles and one must find the lowest point in the lowest valley. The difficulty is that one can not see the map and one only knows a mathematical formula for the terrain and in most applications (like electronics, networks, biochemistry) there are many variables instead of three. Many algorithms will find the lowest point of a particular valley but none are known which effectively find the lowest valley itself. This NSF research is to develop global optimization algorithms for various situations. One is the class of problems where the data is given by polynomials. Another is to determine and parameterize convex problems very efficiently; in convex situations one has only one valley. These pursuits require integration of techniques from numerical mathematics, real and complex algebraic geometry, convex analysis, differential geometry, numerical analysis, and optimization theory, a wide range of mathematics. Jiawang Nie has personal experience with several areas of applications including sensor networks and systems control and this informs his mathematics and techniques. Other important features of this proposal are integrating research and education, developing new mathematical courses, training undergraduate and graduate students on using the latest mathematical tools, advising postdoctoral scholars on how to create novel research results.
本文研究了凸集的线性矩阵不等式表示及其在优化问题中的应用。这项工作涉及不同种类的数学工具,如代数几何,凸分析,微分几何,数值分析,优化理论,和真实的代数。研究者不仅研究线性矩阵不等式表示的广度和深度的基础数学,而且还致力于设计新的算法和软件来解决困难的优化问题。本项目将重点关注以下五个主要主题:刚性凸集的线性矩阵不等式表示,凸半代数集的半定规划表示,凸半代数集的二阶锥规划表示,非负多元多项式的半定规划表示,以及求解非凸优化问题和多项式系统的线性矩阵不等式方法。 求多元函数的全局极小值是科学与工程中的一个基本问题。作为一个比喻,人们可能会想到一个由山脉和山谷组成的复杂地形,绵延数百英里,人们必须在最低的山谷中找到最低点。困难的是,一个人看不到地图,一个人只知道地形的数学公式,在大多数应用中(如电子,网络,生物化学)有很多变量,而不是三个。许多算法将找到特定谷的最低点,但没有已知的有效地找到最低谷本身。NSF的这项研究旨在为各种情况开发全局优化算法。一类是数据由多项式给出的问题。另一个是非常有效地确定和参数化凸问题;在凸的情况下,只有一个谷。这些追求需要从数值数学,真实的和复杂的代数几何,凸分析,微分几何,数值分析和优化理论,广泛的数学技术的集成。Nie Jiawang Nie在传感器网络和系统控制等多个应用领域拥有个人经验,这为他的数学和技术提供了基础。该提案的其他重要特征包括整合研究与教育、开发新的数学课程、培训本科生和研究生使用最新的数学工具、为博士后学者如何创造新颖的研究成果提供建议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiawang Nie其他文献

Nearly Low Rank Tensors and Their Approximations
A Characterization for Tightness of the Sparse Moment-SOS Hierarchy
稀疏矩-SOS层次结构的紧度刻画
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiawang Nie;Zheng Qu;Xindong Tang;Linghao Zhang
  • 通讯作者:
    Linghao Zhang
Preface to the special issue on optimization with polynomials and tensors
Structured semidefinite representation of some convex sets
一些凸集的结构化半定表示
Global Optimization of Polynomial Functions and Applications
多项式函数的全局优化及应用
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiawang Nie
  • 通讯作者:
    Jiawang Nie

Jiawang Nie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiawang Nie', 18)}}的其他基金

Lagrange Multiplier Expression Methods for Optimization
优化的拉格朗日乘子表达方法
  • 批准号:
    2110780
  • 财政年份:
    2021
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Standard Grant
Computational Methods for Symmetric Tensor Problems
对称张量问题的计算方法
  • 批准号:
    1619973
  • 财政年份:
    2016
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Standard Grant
Semidefinite Programming Methods for Moment and Optimization Problems
矩量和优化问题的半定规划方法
  • 批准号:
    1417985
  • 财政年份:
    2014
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

CAREER: Numerical Linear Algebra, Random Matrix Theory and Applications
职业:数值线性代数、随机矩阵理论及应用
  • 批准号:
    1945652
  • 财政年份:
    2019
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Continuing Grant
Matrix-Free Methods for Optimization and Linear Systems
优化和线性系统的无矩阵方法
  • 批准号:
    RGPIN-2014-04269
  • 财政年份:
    2019
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Numerical Linear Algebra, Random Matrix Theory and Applications
职业:数值线性代数、随机矩阵理论及应用
  • 批准号:
    1753185
  • 财政年份:
    2018
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Continuing Grant
Numerical linear algebra: large sparse matrix computations.
数值线性代数:大型稀疏矩阵计算。
  • 批准号:
    9236-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Discovery Grants Program - Individual
Matrix-Free Methods for Optimization and Linear Systems
优化和线性系统的无矩阵方法
  • 批准号:
    RGPIN-2014-04269
  • 财政年份:
    2017
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Discovery Grants Program - Individual
Constrained Linear Scaling 1-Electron Density Matrix Optimization
约束线性缩放 1-电子密度矩阵优化
  • 批准号:
    459621-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Matrix-Free Methods for Optimization and Linear Systems
优化和线性系统的无矩阵方法
  • 批准号:
    RGPIN-2014-04269
  • 财政年份:
    2016
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical linear algebra: large sparse matrix computations.
数值线性代数:大型稀疏矩阵计算。
  • 批准号:
    9236-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Discovery Grants Program - Individual
Constrained Linear Scaling 1-Electron Density Matrix Optimization
约束线性缩放 1-电子密度矩阵优化
  • 批准号:
    459621-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Matrix-Free Methods for Optimization and Linear Systems
优化和线性系统的无矩阵方法
  • 批准号:
    RGPIN-2014-04269
  • 财政年份:
    2015
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了