Lagrange Multiplier Expression Methods for Optimization
优化的拉格朗日乘子表达方法
基本信息
- 批准号:2110780
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimization techniques are useful for solving problems in economics, telecommunications, quantum physics, and other fields. This project involves Lagrange multiplier expression methods for optimization, which are use useful in computing. The project identifies and aims to solve various research tasks from the field of optimization within computational mathematics and related areas. The research topics of this project have broad applications in many areas of STEM. The computational methodology produced by this project will be highly useful in applications such as game theory, power allocation, environment pollution control, quantum entanglement, and tensor optimization. This project will also involve training and education for young scholars.This project aims to solve various research problems in optimization relevant for the applications. Specifically, the project will involve Lagrange multiplier expressions which provide useful framework within computational mathematics. Expressing Lagrange multipliers in terms of objective and constraining functions is an important issue in optimization. Tight convex relaxation is efficient for solving computational questions. The research topics include polynomial optimization, convex algebraic geometry, moment and tensor problems, bilevel optimization, generalized Nash equilibrium problems, stochastic optimization, tensor computation, tensor optimization, and other related problems. The project will address computational questions involving polynomials, matrices, moments and tensors, frequently appearing from various applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
优化技术可用于解决经济学、电信、量子物理和其他领域的问题。该项目涉及用于优化的拉格朗日乘子表达方法,这些方法在计算中很有用。该项目确定并旨在解决计算数学及相关领域优化领域的各种研究任务。该项目的研究课题在STEM的许多领域都有广泛的应用。该项目产生的计算方法将在博弈论、功率分配、环境污染控制、量子纠缠和张量优化等应用中非常有用。该项目还将涉及对年轻学者的培训和教育。该项目旨在解决与应用相关的优化中的各种研究问题。具体来说,该项目将涉及拉格朗日乘子表达式,它为计算数学提供了有用的框架。用目标函数和约束函数来表达拉格朗日乘子是优化中的一个重要问题。紧凸松弛对于解决计算问题非常有效。 研究主题包括多项式优化、凸代数几何、矩和张量问题、双层优化、广义纳什均衡问题、随机优化、张量计算、张量优化以及其他相关问题。该项目将解决涉及多项式、矩阵、矩和张量的计算问题,这些问题经常出现在各种应用程序中。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rational Generalized Nash Equilibrium Problems
- DOI:10.1137/21m1456285
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Jiawang Nie;Xindong Tang;Suhan Zhong
- 通讯作者:Jiawang Nie;Xindong Tang;Suhan Zhong
Loss functions for finite sets
- DOI:10.1007/s10589-022-00420-9
- 发表时间:2021-12
- 期刊:
- 影响因子:2.2
- 作者:Jiawang Nie;Suhan Zhong
- 通讯作者:Jiawang Nie;Suhan Zhong
Dehomogenization for completely positive tensors
- DOI:10.3934/naco.2022037
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Jiawang Nie;Xindong Tang;Zi Yang;Suhan Zhong
- 通讯作者:Jiawang Nie;Xindong Tang;Zi Yang;Suhan Zhong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiawang Nie其他文献
Nearly Low Rank Tensors and Their Approximations
- DOI:
- 发表时间:
2014-12 - 期刊:
- 影响因子:0
- 作者:
Jiawang Nie - 通讯作者:
Jiawang Nie
A Characterization for Tightness of the Sparse Moment-SOS Hierarchy
稀疏矩-SOS层次结构的紧度刻画
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jiawang Nie;Zheng Qu;Xindong Tang;Linghao Zhang - 通讯作者:
Linghao Zhang
Preface to the special issue on optimization with polynomials and tensors
- DOI:
10.1007/s10589-020-00184-0 - 发表时间:
2020-03-12 - 期刊:
- 影响因子:2.000
- 作者:
Jiawang Nie - 通讯作者:
Jiawang Nie
Structured semidefinite representation of some convex sets
一些凸集的结构化半定表示
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
J. Helton;Jiawang Nie - 通讯作者:
Jiawang Nie
Global Optimization of Polynomial Functions and Applications
多项式函数的全局优化及应用
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Jiawang Nie - 通讯作者:
Jiawang Nie
Jiawang Nie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiawang Nie', 18)}}的其他基金
Computational Methods for Symmetric Tensor Problems
对称张量问题的计算方法
- 批准号:
1619973 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Semidefinite Programming Methods for Moment and Optimization Problems
矩量和优化问题的半定规划方法
- 批准号:
1417985 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: Linear Matrix Inequality Representations in Optimization
职业:优化中的线性矩阵不等式表示
- 批准号:
0844775 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似海外基金
Research Infrastructure: CC*Networking Infrastructure: Deep Soil to Supercomputing - Infrastructure Enhancements as a Force Multiplier for Idaho Research
研究基础设施:CC*网络基础设施:从深层到超级计算 - 基础设施增强是爱达荷州研究的力量倍增器
- 批准号:
2346652 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain
合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益
- 批准号:
2323398 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Higher Multiplier Ideals and Other Applications of Hodge Theory in Algebraic Geometry
更高乘数理想及霍奇理论在代数几何中的其他应用
- 批准号:
2301526 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
A Study of the Multiplier Spectrum for Rational Maps
有理图乘子谱的研究
- 批准号:
567925-2022 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Postgraduate Scholarships - Doctoral
Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain
合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益
- 批准号:
2048397 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain
合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益
- 批准号:
2048390 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain
合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益
- 批准号:
2048400 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Phase I: High-performance clock multiplier units
第一阶段:高性能时钟倍频器单元
- 批准号:
560696-2021 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Idea to Innovation
Fiscal Multiplier under Secular Stagnation: A Comparison between the Great Hanshin-Awaji Earthquake and the Great East Japan Earthquake
长期停滞下的财政乘数:阪神淡路大地震与东日本大地震的比较
- 批准号:
20K01706 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fingering flow in the subterranean estuary - A multiplier for the iron curtain and reactive transport processes?
地下河口的指流——铁幕和反应性运输过程的倍增器?
- 批准号:
428293722 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Research Grants














{{item.name}}会员




