CAREER: Scalable Algorithms for Individual Decision Making in Multiagent Settings
职业:多智能体环境中个人决策的可扩展算法
基本信息
- 批准号:0845036
- 负责人:
- 金额:$ 42.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research under this award is developing efficient and effective methods for strategic decision making by an individual artificial agent cohabiting with other agents in uncertain environments. For example, how should an autonomous unmanned aerial vehicle decide between closer surveillance of a possible fugitive or intercepting the target who may be aware of the monitoring? Toward this goal, the research is identifying the sources of computational complexity and understanding the conflicting interrelationship between computational efficiency and decision-making effectiveness. This problem of individual decision making in uncertain multiagent settings is formalized using a recognized framework that combines the decision-theoretic paradigm of partially observable Markov decision processes (POMDPs) with elements of Bayesian games and interactive epistemology. In this framework, called interactive POMDP (I-POMDP), the research utilizes innovative ways of minimally modeling contextual knowledge in multiagent settings, exploits novel decision-making heuristics and embedded structure in problems.Integration of research and education is manifest in the development and delivery of a multi-disciplinary course on strategic decision making under uncertainty, which integrates and compares normative theories with real human decision-making behavior.By combining aspects of decision and game theories, both of which seek to understand normative ways of decision making, with attention to real human decision-making behavior, this research is contributing to long-term research and development of artificial agents that can assist with rational, long-term decision making and planning in areas including emergency response, environmental sustainability, autonomous vehicles and many others.
该奖项下的研究正在开发一个人工智能体与其他智能体在不确定环境中共同生活的有效和有效的战略决策方法。例如,自主无人驾驶飞行器应该如何决定是对可能的逃犯进行更密切的监视,还是拦截可能知道监视的目标?为了实现这一目标,本研究确定了计算复杂性的来源,并理解了计算效率和决策有效性之间相互冲突的关系。这个问题的个人决策在不确定的多智能体设置正式使用公认的框架,结合部分可观察马尔可夫决策过程(POMDPs)的决策理论范式与贝叶斯游戏和交互式认识论的元素。在这个框架中,被称为交互式POMDP(I-POMDP),研究利用创新的方法,最低限度地建模上下文知识在多智能体设置,开发新的决策知识和嵌入结构的问题。研究和教育的整合是体现在开发和交付的多学科课程的战略决策下的不确定性,它将规范理论与真实的人类决策行为进行整合和比较。通过将决策和博弈论的各个方面结合起来,两者都试图理解决策的规范方式,关注真实的人类决策行为,这项研究有助于人工代理的长期研究和开发,这些代理可以在包括应急响应、环境可持续性、自动驾驶汽车和许多其他领域协助进行合理的长期决策和规划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prashant Doshi其他文献
Multi-robot inverse reinforcement learning under occlusion with estimation of state transitions
遮挡下多机器人逆强化学习及状态转换估计
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:14.4
- 作者:
K. Bogert;Prashant Doshi - 通讯作者:
Prashant Doshi
Individual Planning in Open and Typed Agent Systems
开放式和类型化代理系统中的个体规划
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Muthukumaran Chandrasekaran;A. Eck;Prashant Doshi;Leen - 通讯作者:
Leen
A Particle Filtering Algorithm for Interactive POMDPs
交互式 POMDP 的粒子过滤算法
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Prashant Doshi;P. Gmytrasiewicz - 通讯作者:
P. Gmytrasiewicz
SA-Net: Deep Neural Network for Robot Trajectory Recognition from RGB-D Streams
SA-Net:用于 RGB-D 流机器人轨迹识别的深度神经网络
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Nihal Soans;Yi Hong;Prashant Doshi - 通讯作者:
Prashant Doshi
ǫ-Subjective Equivalence of Models for Interactive Dynamic Influence Diagrams
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Prashant Doshi - 通讯作者:
Prashant Doshi
Prashant Doshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prashant Doshi', 18)}}的其他基金
Collaborative Research: RI: Medium: RUI: Automated Decision Making for Open Multiagent Systems
协作研究:RI:中:RUI:开放多智能体系统的自动决策
- 批准号:
2312657 - 财政年份:2023
- 资助金额:
$ 42.97万 - 项目类别:
Standard Grant
RI:Small:Collaborative Research:Scalable Decentralized Planning for Open Multiagent Environments
RI:小型:协作研究:开放多代理环境的可扩展去中心化规划
- 批准号:
1910037 - 财政年份:2019
- 资助金额:
$ 42.97万 - 项目类别:
Standard Grant
NRI: FND: Robust Inverse Learning for Human-Robot Collaboration
NRI:FND:人机协作的鲁棒逆向学习
- 批准号:
1830421 - 财政年份:2018
- 资助金额:
$ 42.97万 - 项目类别:
Standard Grant
RI:Small:Tractable Decision-Theoretic Planning Driven by Data
RI:小:数据驱动的易于处理的决策理论规划
- 批准号:
1815598 - 财政年份:2018
- 资助金额:
$ 42.97万 - 项目类别:
Standard Grant
RAPID: Evacuate or Not? Modeling the Decision Making of Individuals in Impending Disaster Areas
RAPID:疏散还是不疏散?
- 批准号:
1761549 - 财政年份:2017
- 资助金额:
$ 42.97万 - 项目类别:
Standard Grant
CNIC: U.S.-Netherlands Planning Visit for Cooperative Research on Intelligent Methods Under Uncertainty for Renewable Energy Driven Smart Grids
CNIC:美国-荷兰计划访问可再生能源驱动智能电网不确定性下的智能方法合作研究
- 批准号:
1444182 - 财政年份:2015
- 资助金额:
$ 42.97万 - 项目类别:
Standard Grant
EAGER: Decision-Theoretic and Scalable Algorithms for Computing Finite State Equilibrium
EAGER:用于计算有限状态平衡的决策理论和可扩展算法
- 批准号:
1346942 - 财政年份:2013
- 资助金额:
$ 42.97万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
- 批准号:
2336469 - 财政年份:2024
- 资助金额:
$ 42.97万 - 项目类别:
Continuing Grant
CAREER: Fast Scalable Graph Algorithms
职业:快速可扩展图算法
- 批准号:
2340048 - 财政年份:2024
- 资助金额:
$ 42.97万 - 项目类别:
Continuing Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
- 批准号:
2340586 - 财政年份:2024
- 资助金额:
$ 42.97万 - 项目类别:
Continuing Grant
CAREER: Learning Kernels in Operators from Data: Learning Theory, Scalable Algorithms and Applications
职业:从数据中学习算子的内核:学习理论、可扩展算法和应用
- 批准号:
2238486 - 财政年份:2023
- 资助金额:
$ 42.97万 - 项目类别:
Continuing Grant
CAREER: Scalable Algorithms for Nonlinear, Large-Scale Inverse Problems Governed by Dynamical Systems
职业:动态系统控制的非线性、大规模反问题的可扩展算法
- 批准号:
2145845 - 财政年份:2022
- 资助金额:
$ 42.97万 - 项目类别:
Continuing Grant
CAREER: Scalable binning algorithms for genome-resolved metagenomics
职业:用于基因组解析宏基因组学的可扩展分箱算法
- 批准号:
1845890 - 财政年份:2019
- 资助金额:
$ 42.97万 - 项目类别:
Continuing Grant
CAREER: Pushing the Theoretical Limits of Scalable Distributed Algorithms
职业:突破可扩展分布式算法的理论极限
- 批准号:
1845146 - 财政年份:2019
- 资助金额:
$ 42.97万 - 项目类别:
Continuing Grant
CAREER: Towards Fast and Scalable Algorithms for Big Proteogenomics Data Analytics
职业:面向蛋白质基因组大数据分析的快速且可扩展的算法
- 批准号:
1925960 - 财政年份:2018
- 资助金额:
$ 42.97万 - 项目类别:
Standard Grant
CAREER: Towards Fast and Scalable Algorithms for Big Proteogenomics Data Analytics
职业:面向蛋白质基因组大数据分析的快速且可扩展的算法
- 批准号:
1651724 - 财政年份:2017
- 资助金额:
$ 42.97万 - 项目类别:
Standard Grant
CAREER: Scalable Algorithms for Spectral Analysis of Massive Networked Systems
职业:大规模网络系统频谱分析的可扩展算法
- 批准号:
1651433 - 财政年份:2017
- 资助金额:
$ 42.97万 - 项目类别:
Standard Grant