EAGER: Decision-Theoretic and Scalable Algorithms for Computing Finite State Equilibrium
EAGER:用于计算有限状态平衡的决策理论和可扩展算法
基本信息
- 批准号:1346942
- 负责人:
- 金额:$ 15.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is exploring algorithms for computing multiagent strategies that are in exact and approximate equilibrium. The context involves economic games that are played repeatedly by agents each of whom privately observes noisy signals about other players' actions. A complete characterization of equilibria for such games, missing until recently, introduces the concept of a finite state equilibrium in which each player's strategy is represented as a finite state automaton. Players' strategies are verified to be in equilibrium by solving a partially observable Markov decision process. The research is building on this surprising and deep application of decision theory toward equilibrium analysis in a pragmatic class of games, which provides a bold and innovative bridge between decision and game theories. It is designing novel algorithms that utilize approximate and error-bounded solutions of partially observable Markov decision processes for computing approximate finite state equilibrium in games with increasing dimensions.This research is contributing insights for broader classes of games such as stochastic games with noisy signals. The interdisciplinary outcomes of this research are being integrated into courses and conference tutorials on multiagent decision making for dissemination. New international research collaborations with eminent multiagent researchers in Japan are being established.This research is bringing together the disciplines of decision and game theories with mutual benefit. Key outcomes include scalable algorithms for solving highly complex games thereby contributing to the understanding of sophisticated interactions under uncertainty. Applications include analyzing auctions without release of public information, covert price wars between firms, and managing resource congestion.
这个项目是探索算法计算多智能体的战略,在精确和近似平衡。背景涉及经济游戏,这些游戏由代理人重复进行,每个代理人都私下观察其他参与者行为的噪音信号。一个完整的表征均衡的这种游戏,失踪,直到最近,介绍了一个有限状态均衡的概念,其中每个球员的战略表示为一个有限状态自动机。通过求解一个部分可观测的马尔可夫决策过程,验证了局中人的策略处于均衡状态。这项研究是建立在这个令人惊讶的和深入的应用决策理论对均衡分析在一个务实的游戏类,这提供了一个大胆的和创新的桥梁决策和博弈理论。它正在设计新的算法,利用部分可观察马尔可夫决策过程的近似和误差有界的解决方案,计算近似有限状态均衡的游戏与increasing dimensions.This research is contributing insights for broader class of games,如随机游戏噪声信号。这项研究的跨学科成果正在被整合到多智能体决策的课程和会议教程中进行传播。正在与日本著名的多智能体研究人员建立新的国际研究合作关系。这项研究正在将决策和博弈论的学科结合起来,实现互利共赢。主要成果包括解决高度复杂游戏的可扩展算法,从而有助于理解不确定性下的复杂交互。应用程序包括分析拍卖没有公开信息发布,公司之间的隐蔽价格战,管理资源拥塞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prashant Doshi其他文献
A Particle Filtering Algorithm for Interactive POMDPs
交互式 POMDP 的粒子过滤算法
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Prashant Doshi;P. Gmytrasiewicz - 通讯作者:
P. Gmytrasiewicz
Multi-robot inverse reinforcement learning under occlusion with estimation of state transitions
遮挡下多机器人逆强化学习及状态转换估计
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:14.4
- 作者:
K. Bogert;Prashant Doshi - 通讯作者:
Prashant Doshi
Individual Planning in Open and Typed Agent Systems
开放式和类型化代理系统中的个体规划
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Muthukumaran Chandrasekaran;A. Eck;Prashant Doshi;Leen - 通讯作者:
Leen
SA-Net: Deep Neural Network for Robot Trajectory Recognition from RGB-D Streams
SA-Net:用于 RGB-D 流机器人轨迹识别的深度神经网络
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Nihal Soans;Yi Hong;Prashant Doshi - 通讯作者:
Prashant Doshi
ǫ-Subjective Equivalence of Models for Interactive Dynamic Influence Diagrams
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Prashant Doshi - 通讯作者:
Prashant Doshi
Prashant Doshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prashant Doshi', 18)}}的其他基金
Collaborative Research: RI: Medium: RUI: Automated Decision Making for Open Multiagent Systems
协作研究:RI:中:RUI:开放多智能体系统的自动决策
- 批准号:
2312657 - 财政年份:2023
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
RI:Small:Collaborative Research:Scalable Decentralized Planning for Open Multiagent Environments
RI:小型:协作研究:开放多代理环境的可扩展去中心化规划
- 批准号:
1910037 - 财政年份:2019
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
NRI: FND: Robust Inverse Learning for Human-Robot Collaboration
NRI:FND:人机协作的鲁棒逆向学习
- 批准号:
1830421 - 财政年份:2018
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
RI:Small:Tractable Decision-Theoretic Planning Driven by Data
RI:小:数据驱动的易于处理的决策理论规划
- 批准号:
1815598 - 财政年份:2018
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
RAPID: Evacuate or Not? Modeling the Decision Making of Individuals in Impending Disaster Areas
RAPID:疏散还是不疏散?
- 批准号:
1761549 - 财政年份:2017
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
CNIC: U.S.-Netherlands Planning Visit for Cooperative Research on Intelligent Methods Under Uncertainty for Renewable Energy Driven Smart Grids
CNIC:美国-荷兰计划访问可再生能源驱动智能电网不确定性下的智能方法合作研究
- 批准号:
1444182 - 财政年份:2015
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
CAREER: Scalable Algorithms for Individual Decision Making in Multiagent Settings
职业:多智能体环境中个人决策的可扩展算法
- 批准号:
0845036 - 财政年份:2009
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:
10575550 - 财政年份:2023
- 资助金额:
$ 15.02万 - 项目类别:
Impact of decision theoretic models in information elicitation
决策理论模型对信息获取的影响
- 批准号:
RGPIN-2018-04005 - 财政年份:2022
- 资助金额:
$ 15.02万 - 项目类别:
Discovery Grants Program - Individual
Unifying Recent Advances in Deep Learning with Decision-theoretic Planning for Learned MDPs and POMDPs
将深度学习的最新进展与学习 MDP 和 POMDP 的决策理论规划相结合
- 批准号:
RGPIN-2022-04377 - 财政年份:2022
- 资助金额:
$ 15.02万 - 项目类别:
Discovery Grants Program - Individual
Impact of decision theoretic models in information elicitation
决策理论模型对信息获取的影响
- 批准号:
RGPIN-2018-04005 - 财政年份:2021
- 资助金额:
$ 15.02万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Decision Theoretic Life Cycle Assessment
职业:决策理论生命周期评估
- 批准号:
2047199 - 财政年份:2021
- 资助金额:
$ 15.02万 - 项目类别:
Continuing Grant
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
- 批准号:
RGPIN-2016-05705 - 财政年份:2021
- 资助金额:
$ 15.02万 - 项目类别:
Discovery Grants Program - Individual
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
- 批准号:
RGPIN-2016-05705 - 财政年份:2020
- 资助金额:
$ 15.02万 - 项目类别:
Discovery Grants Program - Individual
RI: Small: Exploiting Symmetries of Decision-Theoretic Planning for Autonomous Vehicles
RI:小:利用自动驾驶车辆决策理论规划的对称性
- 批准号:
2006886 - 财政年份:2020
- 资助金额:
$ 15.02万 - 项目类别:
Standard Grant
Algebraic and decision-theoretic ways into quantum resource theories
量子资源理论的代数和决策理论方法
- 批准号:
20K03746 - 财政年份:2020
- 资助金额:
$ 15.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Impact of decision theoretic models in information elicitation
决策理论模型对信息获取的影响
- 批准号:
RGPIN-2018-04005 - 财政年份:2020
- 资助金额:
$ 15.02万 - 项目类别:
Discovery Grants Program - Individual