CAREER: Wyoming Applied Analysis & Computing Group: Behavior of Solutions of Nonlinear Partial Differential Equations
职业:怀俄明州应用分析
基本信息
- 批准号:0845127
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports a coordinated set of research and educational activities with the goals of elucidating the behavior of solutions of certain nonlinear partial differential equations and stimulating the environment for research and study in analysis, differential equations, and related computation at the University of Wyoming. This activity centers on the Wyoming Applied Analysis & Computing Group, a team consisting of undergraduate and graduate students, University of Wyoming faculty, and faculty from Wyoming's network of community colleges. Nonlinear partial differential equations arise generically in mathematical models of physical phenomena. However, a broad understanding of their properties remains a fundamental challenge in pure and applied mathematics. The differential equations that are the focus of this research are physically motivated, and their features (nonlinearity, multiple space dimensions, multiple scales) represent some of the central challenges in the analysis of such equations. The research agenda includes investigation of a recent conjecture about the formation of violent oscillations in the focusing nonlinear Schrodinger equation; this conjecture is part of an emerging belief that the formation of these oscillations may have a universal character. The validation of the appearance of such universal behavior in differential equations is certain to drive a wave of new developments in the analysis of nonlinear phenomena. On a mathematical level, the plan of attack is based on a broad array of analytical techniques, including Evans functions, singular perturbations, dynamical systems, spectral theory for linear operators, complex analysis, and numerical analysis. The anticipated results, if achieved, have the potential to make an impact on applications and other areas of mathematics. One of the research projects aims to extend the asymptotic analysis of Riemann-Hilbert problems arising in the analysis of integrable partial differential equations; such extensions are expected to be useful in the seemingly unrelated analysis of orthogonal polynomials and random matrices.The breadth of mathematical tools required by the research agenda ensures that the Wyoming Applied Analysis & Computing Group will serve as an ideal training ground in applied analysis and computation for the next generation of researchers and students. In addition to collective work on the research agenda, the group will host an annual two-week immersion into research activities for select community-college faculty. Additionally, the group's activities will include participation in the annual "articulation conferences" that are held to connect the math and science departments at the University of Wyoming with those at Wyoming's seven community colleges. These activities will strengthen the mathematical network across the state. The group's recruitment and training strategy is partially based on the development of a novel calculus course that treats numerical methods as an intrinsic part of calculus. The course prepares students to participate in the group at an early stage of their careers.
该奖项支持一系列研究和教育活动,其目标是阐明某些非线性偏微分方程的解的行为,并为怀俄明大学的分析、微分方程和相关计算的研究和学习创造环境。这项活动以怀俄明应用分析与计算小组为中心,该小组由本科生和研究生、怀俄明大学的教员以及怀俄明社区学院网络的教员组成。非线性偏微分方程一般出现在物理现象的数学模型中。然而,对其性质的广泛理解仍然是纯数学和应用数学的一个基本挑战。本研究的重点是微分方程的物理动机,它们的特征(非线性、多空间维度、多尺度)代表了分析这些方程的一些核心挑战。研究议程包括研究最近关于聚焦非线性薛定谔方程中形成剧烈振荡的猜想;这一猜想是新兴信念的一部分,即这些振荡的形成可能具有普遍特征。这种普遍行为在微分方程中出现的证实,一定会推动非线性现象分析的一波新发展。在数学层面上,攻击计划基于广泛的分析技术,包括埃文斯函数、奇异摄动、动力系统、线性算子的谱理论、复分析和数值分析。预期的结果,如果实现,有可能对应用和其他数学领域产生影响。其中一个研究项目旨在扩展可积偏微分方程分析中出现的Riemann-Hilbert问题的渐近分析;这样的扩展在正交多项式和随机矩阵的看似无关的分析中是有用的。研究议程所需的数学工具的广度确保了怀俄明州应用分析和计算小组将成为下一代研究人员和学生应用分析和计算的理想训练基地。除了研究议程上的集体工作外,该小组还将为选定的社区学院教师举办为期两周的年度沉浸式研究活动。此外,该组织的活动将包括参加一年一度的“衔接会议”,该会议旨在将怀俄明大学的数学系和科学系与怀俄明七所社区学院的学系联系起来。这些活动将加强全州的数学网络。该小组的招聘和培训策略部分基于一门新颖的微积分课程的发展,该课程将数值方法视为微积分的内在组成部分。该课程为学生在职业生涯的早期阶段参与团队做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Lyng其他文献
Stability of viscous detonations for Majda’s model
- DOI:
10.1016/j.physd.2013.06.001 - 发表时间:
2013-09-15 - 期刊:
- 影响因子:
- 作者:
Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation : recent developments
- DOI:
10.1090/conm/635/12717 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Gregory Lyng - 通讯作者:
Gregory Lyng
Euler Versus Lagrange: The Role of Coordinates in Practical Evans-Function Computations
欧拉与拉格朗日:坐标在实际埃文斯函数计算中的作用
- DOI:
10.1137/17m113770x - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
B. Barker;J. Humpherys;Gregory Lyng;K. Zumbrun - 通讯作者:
K. Zumbrun
Stability of Viscous Weak Detonation Waves for Majda’s Model
- DOI:
10.1007/s10884-015-9440-3 - 发表时间:
2015-03-13 - 期刊:
- 影响因子:1.300
- 作者:
Jeffrey Hendricks;Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Gregory Lyng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Lyng', 18)}}的其他基金
New Perspectives on Nonlinear Waves: Taming Modulational Instability
非线性波的新视角:抑制调制不稳定性
- 批准号:
1413273 - 财政年份:2014
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Rocky Mountain Summer School: Conservation Laws & Applications
落基山暑期学校:守恒定律
- 批准号:
1005317 - 财政年份:2010
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
相似海外基金
ART: Re-engineering Technology Transfer at the University of Wyoming
ART:怀俄明大学的技术转让再造
- 批准号:
2331477 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Cooperative Agreement
NSF Engines: Colorado - Wyoming Climate Resilience Engine
NSF 引擎:科罗拉多州 - 怀俄明州气候恢复引擎
- 批准号:
2315760 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Cooperative Agreement
REU Site: A Community College Based REU Site for the Wyoming Region
REU 站点:怀俄明州社区大学 REU 站点
- 批准号:
2349762 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
EAR-PF: Geochemical Evidence for the onset of Plate Tectonics on the Early Earth from the Wyoming Province and Singhbhum Craton
EAR-PF:来自怀俄明州和 Singhbhum 克拉通的早期地球板块构造开始的地球化学证据
- 批准号:
2204595 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Fellowship Award
RII Track-4: Partnership Between the University of Wyoming and the Missoula Fire Sciences Laboratory in Multi-Scale Wildland Fire Research
RII Track-4:怀俄明大学与米苏拉火灾科学实验室在多尺度荒地火灾研究方面的合作
- 批准号:
2033379 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
REU Site: A Community College Based REU in the Wyoming Region
REU 站点:位于怀俄明州地区社区学院的 REU
- 批准号:
2051148 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Continuing Grant
RFA-DP-21-001 DP006596 Wyoming PRAMS
RFA-DP-21-001 DP006596 怀俄明州 PRAMS
- 批准号:
10590771 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别: