New Perspectives on Nonlinear Waves: Taming Modulational Instability

非线性波的新视角:抑制调制不稳定性

基本信息

  • 批准号:
    1413273
  • 负责人:
  • 金额:
    $ 24.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

The nonlinear Schrödinger (NLS) equation is a fundamental model equation in modern mathematical physics. This equation may serve, for example, to describe both certain water waves and the propagation of light in optical fibers. However, the nonlinear nature of this equation is an obstacle that prevents the straightforward application of most existing general-purpose mathematical tools. This project will use the special structure of this equation to examine in detail two features of its solutions, called modulational instability (MI) and supercontinuum generation (SCG). While the starting point of these investigations is based on the mathematical properties of the NLS equation, MI and SCG are important phenomena in the real world. For example, MI has been proposed as an important element in the formation of "rogue waves" in the ocean; these rare but relatively large and spontaneous waves may be quite dangerous. Furthermore, SCG is important in optical telecommunications systems and in optical coherence tomography, an imaging technique used in opthalmology to reveal detailed retinal structures. A better understanding of this mathematical phenomenon thus has the potential to influence the design and development of telecommunications systems and optical devices. This project's investigation of MI and SCG is based on the initial-value problem for the focusing NLS equation in the small-dispersion regime. In this regime, nonlinear effects are dominant, and solutions exhibit small-scale oscillations and violent transitions (nonlinear caustics) to even more complicated oscillatory patterns. Both MI and SCG figure prominently in this behavior. Indeed, in the limit of vanishing dispersion (also known as the semiclassical limit), MI suggests that a generic plane wave solution may be expected to break immediately into some other, presumably more disordered, form. However, recent results show that there do exist distinguished perturbations which do not excite the acute modulational instabilities known to be present in the small-dispersion regime. This project will incorporate such special perturbations into the broader theory of the zero-dispersion limit of the focusing NLS equation. As part of this effort, a scheme for classifying and describing these perturbations will be developed. Once this is done, the import of such special perturbations for applications can be assessed. Another component of this research will be to extend a non-standard method for computing the Fourier Power Spectrum of solutions to a broader class of initial data; once completed, this method will give a new, direct way to measure the impact of wave breaking (nonlinear caustics) on SCG.
非线性Schrödinger (NLS)方程是现代数学物理中的一个基本模型方程。例如,这个方程可以用来描述某些水波和光在光纤中的传播。然而,这个方程的非线性本质是一个障碍,它阻碍了大多数现有通用数学工具的直接应用。该项目将利用该方程的特殊结构来详细研究其解的两个特征,即调制不稳定性(MI)和超连续统生成(SCG)。虽然这些研究的出发点是基于NLS方程的数学性质,但MI和SCG是现实世界中的重要现象。例如,MI被认为是海洋中“异常浪”形成的重要因素;这些罕见但相对较大的自发波可能相当危险。此外,SCG在光学通信系统和光学相干断层扫描中也很重要,光学相干断层扫描是一种用于眼科的成像技术,用于显示详细的视网膜结构。因此,对这一数学现象的更好理解有可能影响电信系统和光学设备的设计和发展。本项目的MI和SCG研究是基于小色散区域聚焦NLS方程的初值问题。在这种情况下,非线性效应占主导地位,解表现出小尺度振荡和向更复杂的振荡模式的剧烈转变(非线性焦散)。MI和SCG在这种行为中都很突出。事实上,在消失色散的极限(也称为半经典极限)中,MI表明,一般平面波解可能会立即分裂成另一种可能更无序的形式。然而,最近的结果表明,确实存在明显的扰动,这些扰动不会激发已知存在于小色散状态中的急性调制不稳定性。这个项目将把这种特殊的扰动纳入聚焦NLS方程的零色散极限的更广泛的理论中。作为这项工作的一部分,将开发一种对这些扰动进行分类和描述的方案。一旦这样做了,就可以评估这种特殊扰动对应用的重要性。本研究的另一个组成部分将是将计算解的傅里叶功率谱的非标准方法扩展到更广泛的初始数据类别;一旦完成,该方法将提供一种新的、直接的方法来测量破波(非线性焦散)对SCG的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Lyng其他文献

Stability of viscous detonations for Majda’s model
  • DOI:
    10.1016/j.physd.2013.06.001
  • 发表时间:
    2013-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun
  • 通讯作者:
    Kevin Zumbrun
Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation : recent developments
  • DOI:
    10.1090/conm/635/12717
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gregory Lyng
  • 通讯作者:
    Gregory Lyng
Euler Versus Lagrange: The Role of Coordinates in Practical Evans-Function Computations
欧拉与拉格朗日:坐标在实际埃文斯函数计算中的作用
  • DOI:
    10.1137/17m113770x
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Barker;J. Humpherys;Gregory Lyng;K. Zumbrun
  • 通讯作者:
    K. Zumbrun
Stability of Viscous Weak Detonation Waves for Majda’s Model
  • DOI:
    10.1007/s10884-015-9440-3
  • 发表时间:
    2015-03-13
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Jeffrey Hendricks;Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun
  • 通讯作者:
    Kevin Zumbrun

Gregory Lyng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Lyng', 18)}}的其他基金

Rocky Mountain Summer School: Conservation Laws & Applications
落基山暑期学校:守恒定律
  • 批准号:
    1005317
  • 财政年份:
    2010
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Standard Grant
CAREER: Wyoming Applied Analysis & Computing Group: Behavior of Solutions of Nonlinear Partial Differential Equations
职业:怀俄明州应用分析
  • 批准号:
    0845127
  • 财政年份:
    2009
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Standard Grant

相似海外基金

The syntax of nominal copular clauses: theoretical and empirical perspectives
名词系动词从句的语法:理论和实证视角
  • 批准号:
    AH/Y007492/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Research Grant
Attitudes towards sustainable plant-based diets in Japan: Business and consumer perspectives
日本对可持续植物性饮食的态度:企业和消费者的观点
  • 批准号:
    24K16414
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Global Perspectives of the Short-term Association between Suicide and Nighttime Excess Heat during Tropical Nights
热带夜晚自杀与夜间酷热之间短期关联的全球视角
  • 批准号:
    24K10701
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reconceptualizing Well-being to Foster a Sustainable Society through Indigenous and Youth Perspectives from the Global South
从南半球原住民和青年的角度重新定义福祉,促进可持续发展的社会
  • 批准号:
    24K03155
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Black British History: Local Perspectives
英国黑人历史:当地视角
  • 批准号:
    AH/Y000765/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Research Grant
New perspectives towards Woodall's Conjecture and the Generalised Berge-Fulkerson Conjecture
伍德尔猜想和广义伯奇-富尔克森猜想的新视角
  • 批准号:
    EP/X030989/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Research Grant
The development and evaluation of a theatrical method to take others' perspectives: parent-child communication
换位思考的戏剧方法的发展与评价:亲子沟通
  • 批准号:
    23KJ2239
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Low-Degree Polynomial Perspectives on Complexity
职业:复杂性的低次多项式视角
  • 批准号:
    2338091
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Continuing Grant
Reframing arrival: Transnational perspectives on perceptions, governance and practices - REFRAME.
重构到来:关于认知、治理和实践的跨国视角 - REFRAME。
  • 批准号:
    AH/Y00759X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.55万
  • 项目类别:
    Research Grant
Healthcare provider perspectives on the role of healthbots in delivering care to patients taking varenicline for smoking cessation
医疗保健提供者对健康机器人在为服用伐尼克兰戒烟的患者提供护理方面的作用的看法
  • 批准号:
    492844
  • 财政年份:
    2023
  • 资助金额:
    $ 24.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了