CAREER: Adaptive Power Management for Multiprocessor System-on-Chip

职业:多处理器片上系统的自适应电源管理

基本信息

  • 批准号:
    0845947
  • 负责人:
  • 金额:
    $ 40.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2012-01-31
  • 项目状态:
    已结题

项目摘要

CAREER: Adaptive Power Management for Multiprocessor System-on-ChipMultiprocessor System-on-Chip (MPSoC) is becoming a major VLSI system design platform due to its advantages in low design cost and high performance. However, power consumption in MPSoC is a crucial factor that is limiting the growth of system performance and functionality. The complexity of the MPSoC hardware and software imposes new challenges and requirements for research in system-level power management.An effective power manager must be aware of the status of the hardware, the application and the working environment and be able to adapt to the changes. It should be able to work robustly even if the perfect system information is not available. As the number of components that can be power controlled increases, it is increasingly difficult to perform power management in a centralized manner. A hierarchical and distributed power management method is more suitable for MPSoC platforms. Finally, resource management, power management, and thermal management are inter-correlated tasks and it is desirable for them to be optimized simultaneously.This research project addresses the above mentioned challenges by investigating the theoretical foundation and the applied framework of adaptive power management for the next generation MPSoC. This project consists of four research components: (1) investigate online modeling techniques for runtime workload prediction and hardware performance/power characterization; (2) research new optimization techniques for adaptive resource and power management in a partially observable system; (3) model the distributed power management problem as a multi-agent cooperative game and develop control policy using game theory; (4) develop a unified and standard platform for modeling, optimization and evaluation of power-managed MPSoC.The educational components of this project will introduce the students to the implementation and optimization techniques of system-level power management and provide students unique hands-on experience with MPSoC design and optimization.
职业:多处理器片上系统(MPSoC)以其低成本、高性能的优势,成为VLSI系统设计的主流平台。然而,MPSoC中的功耗是限制系统性能和功能增长的关键因素。MPSoC硬件和软件的复杂性对系统级电源管理的研究提出了新的挑战和要求,一个有效的电源管理器必须了解硬件、应用和工作环境的状态,并能够适应变化。它应该能够稳健地工作,即使完美的系统信息不可用。随着可以被功率控制的组件的数量增加,以集中方式执行功率管理变得越来越困难。分层分布式的电源管理方法更适合于MPSoC平台。最后,资源管理、电源管理和热管理是相互关联的任务,需要同时优化它们,本研究项目通过研究下一代MPSoC自适应电源管理的理论基础和应用框架来解决上述挑战。本项目包括四个研究部分:(1)研究运行时负载预测和硬件性能/功耗表征的在线建模技术;(2)研究部分可观测系统中自适应资源和功耗管理的新优化技术;(3)将分布式电源管理问题建模为多智能体合作博弈,并利用博弈论开发控制策略;(4)开发统一的标准平台,用于电源管理MPSoC的建模、优化和评估。本项目的教育部分将向学生介绍系统级电源管理的实现和优化技术,并为学生提供MPSoC设计和优化的独特实践经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qinru Qiu其他文献

Applying Machine Learning in Designing Distributed Auction for Multi-agent Task Allocation with Budget Constraints
应用机器学习设计分布式拍卖以实现预算约束下的多代理任务分配
High-Level Plan for Behavioral Robot Navigation with Natural Language Directions and R-NET
使用自然语言方向和 R-NET 进行行为机器人导航的高级计划
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amar Shrestha;Krittaphat Pugdeethosapol;Haowen Fang;Qinru Qiu
  • 通讯作者:
    Qinru Qiu
Assisting fuzzy offline handwriting recognition using recurrent belief propagation
使用循环置信传播辅助模糊离线手写识别
A low-computation-complexity, energy-efficient, and high-performance linear program solver using memristor crossbars
使用忆阻器交叉开关的低计算复杂度、节能且高性能的线性程序求解器
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Cai;Ao Ren;Yanzhi Wang;S. Soundarajan;Qinru Qiu;Bo Yuan;P. Bogdan
  • 通讯作者:
    P. Bogdan
Towards Budget-Driven Hardware Optimization for Deep Convolutional Neural Networks Using Stochastic Computing
使用随机计算实现深度卷积神经网络的预算驱动硬件优化

Qinru Qiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qinru Qiu', 18)}}的其他基金

Phase I IUCRC Syracuse University: Center for Alternative Sustainable and Intelligent Computing (ASIC)
第一阶段 IUCRC 雪城大学:替代可持续和智能计算中心 (ASIC)
  • 批准号:
    1822165
  • 财政年份:
    2018
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Continuing Grant
CPS: Medium: Enabling Multimodal Sensing, Real-time Onboard Detection and Adaptive Control for Fully Autonomous Unmanned Aerial Systems
CPS:中:为完全自主的无人机系统实现多模态传感、实时机载检测和自适应控制
  • 批准号:
    1739748
  • 财政年份:
    2017
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Standard Grant
Syracuse University Planning Grant: I/UCRC for Alternative Sustainable and Intelligent Computing
雪城大学规划补助金:I/UCRC 用于替代可持续和智能计算
  • 批准号:
    1650469
  • 财政年份:
    2017
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Standard Grant
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
  • 批准号:
    1337300
  • 财政年份:
    2013
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Power Management for Multiprocessor System-on-Chip
职业:多处理器片上系统的自适应电源管理
  • 批准号:
    1203986
  • 财政年份:
    2011
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Continuing Grant
Expansion of Adaptive Link Rate Switching Method between SDN Switches for Power Saving in Organization Networks
扩展 SDN 交换机之间的自适应链路速率切换方法,以实现组织网络的节能
  • 批准号:
    23K11081
  • 财政年份:
    2023
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cross-Layer Energy Optimization with Adaptive Control for Ultra-Low Power IoT Sensor Nodes
针对超低功耗物联网传感器节点的跨层能量优化和自适应控制
  • 批准号:
    23K11026
  • 财政年份:
    2023
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
  • 批准号:
    2316675
  • 财政年份:
    2023
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Adaptive, Human-centric Demand-side Flexibility Coordination At-scale in Electric Power Networks
合作研究:CPS:中:电力网络中大规模的自适应、以人为中心的需求方灵活性协调
  • 批准号:
    2208794
  • 财政年份:
    2022
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Adaptive, Human-centric Demand-side Flexibility Coordination At-scale in Electric Power Networks
合作研究:CPS:中:电力网络中大规模的自适应、以人为中心的需求方灵活性协调
  • 批准号:
    2300355
  • 财政年份:
    2022
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Standard Grant
Next Generation Adaptive Medium Voltage Power Converters for Renewable Energy Conversion
用于可再生能源转换的下一代自适应中压电源转换器
  • 批准号:
    RGPIN-2021-03629
  • 财政年份:
    2022
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Discovery Grants Program - Individual
CCF: SHF: Small: Self-Adaptive Interference-Avoiding Wireless Receiver Hardware through Real-Time Learning-Based Automatic Optimization of Power-Efficient Integrated Circuits
CCF:SHF:小型:通过基于实时学习的高能效集成电路自动优化实现自适应干扰避免无线接收器硬件
  • 批准号:
    2218845
  • 财政年份:
    2022
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Standard Grant
Enhanced Power System Resiliency through Adaptive Automatic Remedial Action Selection using Multi-Agent Reinforcement Learning
使用多智能体强化学习进行自适应自动补救措施选择,增强电力系统的弹性
  • 批准号:
    2231677
  • 财政年份:
    2022
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Adaptive, Human-centric Demand-side Flexibility Coordination At-scale in Electric Power Networks
合作研究:CPS:中:电力网络中大规模的自适应、以人为中心的需求方灵活性协调
  • 批准号:
    2207759
  • 财政年份:
    2022
  • 资助金额:
    $ 40.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了