XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
基本信息
- 批准号:1337300
- 负责人:
- 金额:$ 27.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The explosion of "big data" applications imposes severe challenges of data processing speed and scalability on traditional computer systems. The performance of traditional Von Neumann machines is greatly hindered by the increasing performance gap between CPU and memory, motivating the active research on new or alternative computing architectures. By imitating brain's naturally massive parallel architecture with closely coupled memory and computing as well as the unique analog domain operations, neuromorphic computing systems are anticipated to deliver superior speed for applications in image recognition and natural language understanding.The objective of this research is to establish the fundamental framework and design methodology for NeoNexus -- the next-generation information processing system inspired by human neocortex. It integrates neuromorphic computing accelerators with conventional computing resources by leveraging large scale inference-based data processing and computing acceleration technique atop memristor crossbar arrays. The computation and data exchange will be carefully coordinated and supported by the innovative interconnect architecture, i.e., a hierarchical network-on-chip (NoC). The software-hardware co-design platform will be developed to address the various design challenges. The project will help computer architecture and high-performance computing communities to overcome the ever-increasing technical challenges of traditional architectures and accelerate the fusion between conventional computing technology and cognitive computing model. It will also promote the applications of artificial intelligence technology advances in modern computer architectures and motivate the inventions at both software and hardware levels. Undergraduate and graduate students involved in this research will be trained for the next-generation semiconductor industry workforce.
“大数据”应用的爆炸式增长对传统计算机系统的数据处理速度和可扩展性提出了严峻的挑战。传统的冯诺依曼机的性能受到CPU和存储器之间性能差距的极大阻碍,激发了对新的或替代的计算架构的积极研究。通过模仿大脑的自然大规模并行架构,紧密耦合的存储器和计算以及独特的模拟域操作,神经形态计算系统有望为图像识别和自然语言理解等应用提供上级速度。本研究的目的是建立NeoNexus的基本框架和设计方法。新一代信息处理系统的灵感来自于人类大脑皮层。它通过在忆阻器交叉阵列上利用基于大规模推理的数据处理和计算加速技术,将神经形态计算加速器与传统计算资源集成在一起。计算和数据交换将得到创新的互连架构的精心协调和支持,即,分层片上网络(NoC)。将开发软硬件协同设计平台,以应对各种设计挑战。该项目将帮助计算机体系结构和高性能计算社区克服传统体系结构日益增长的技术挑战,加速传统计算技术与认知计算模型之间的融合。它还将促进人工智能技术在现代计算机体系结构中的应用,并推动软件和硬件层面的发明。参与这项研究的本科生和研究生将接受下一代半导体行业劳动力的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qinru Qiu其他文献
Applying Machine Learning in Designing Distributed Auction for Multi-agent Task Allocation with Budget Constraints
应用机器学习设计分布式拍卖以实现预算约束下的多代理任务分配
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Chen Luo;Qinwei Huang;Fanxin Kong;Simon Khan;Qinru Qiu - 通讯作者:
Qinru Qiu
High-Level Plan for Behavioral Robot Navigation with Natural Language Directions and R-NET
使用自然语言方向和 R-NET 进行行为机器人导航的高级计划
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Amar Shrestha;Krittaphat Pugdeethosapol;Haowen Fang;Qinru Qiu - 通讯作者:
Qinru Qiu
Assisting fuzzy offline handwriting recognition using recurrent belief propagation
使用循环置信传播辅助模糊离线手写识别
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yilan Li;Zhe Li;Qinru Qiu - 通讯作者:
Qinru Qiu
A low-computation-complexity, energy-efficient, and high-performance linear program solver using memristor crossbars
使用忆阻器交叉开关的低计算复杂度、节能且高性能的线性程序求解器
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
R. Cai;Ao Ren;Yanzhi Wang;S. Soundarajan;Qinru Qiu;Bo Yuan;P. Bogdan - 通讯作者:
P. Bogdan
Towards Budget-Driven Hardware Optimization for Deep Convolutional Neural Networks Using Stochastic Computing
使用随机计算实现深度卷积神经网络的预算驱动硬件优化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Zhe Li;Ji Li;Ao Ren;Caiwen Ding;J. Draper;Qinru Qiu;Bo Yuan;Yanzhi Wang - 通讯作者:
Yanzhi Wang
Qinru Qiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qinru Qiu', 18)}}的其他基金
Phase I IUCRC Syracuse University: Center for Alternative Sustainable and Intelligent Computing (ASIC)
第一阶段 IUCRC 雪城大学:替代可持续和智能计算中心 (ASIC)
- 批准号:
1822165 - 财政年份:2018
- 资助金额:
$ 27.59万 - 项目类别:
Continuing Grant
CPS: Medium: Enabling Multimodal Sensing, Real-time Onboard Detection and Adaptive Control for Fully Autonomous Unmanned Aerial Systems
CPS:中:为完全自主的无人机系统实现多模态传感、实时机载检测和自适应控制
- 批准号:
1739748 - 财政年份:2017
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
Syracuse University Planning Grant: I/UCRC for Alternative Sustainable and Intelligent Computing
雪城大学规划补助金:I/UCRC 用于替代可持续和智能计算
- 批准号:
1650469 - 财政年份:2017
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
CAREER: Adaptive Power Management for Multiprocessor System-on-Chip
职业:多处理器片上系统的自适应电源管理
- 批准号:
1203986 - 财政年份:2011
- 资助金额:
$ 27.59万 - 项目类别:
Continuing Grant
CAREER: Adaptive Power Management for Multiprocessor System-on-Chip
职业:多处理器片上系统的自适应电源管理
- 批准号:
0845947 - 财政年份:2009
- 资助金额:
$ 27.59万 - 项目类别:
Continuing Grant
相似国自然基金
食品包装纸中DSD-FWAs的检测技术、迁移体系与迁移数学模型研究
- 批准号:81072306
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
钝感炸药爆轰冲击波动力学(DSD)高阶模型的研究
- 批准号:11002129
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
XPS: DSD: Collaborative Research: NeoNexus: The Next-generation Information Processing System across Digital and Neuromorphic Computing Domains
XPS:DSD:协作研究:NeoNexus:跨数字和神经形态计算领域的下一代信息处理系统
- 批准号:
1744077 - 财政年份:2017
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
- 批准号:
1720635 - 财政年份:2016
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
- 批准号:
1533933 - 财政年份:2015
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: FPGA Cloud Platform for Deep Learning, Applications in Computer Vision
XPS:完整:DSD:协作研究:深度学习 FPGA 云平台、计算机视觉应用
- 批准号:
1533771 - 财政年份:2015
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
- 批准号:
1533797 - 财政年份:2015
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Moving the Abyss: Database Management on Future 1000-core Processors
XPS:完整:DSD:协作研究:移动深渊:未来 1000 核处理器上的数据库管理
- 批准号:
1438955 - 财政年份:2014
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Rapid Prototyping HPC Environment for Deep Learning
XPS:完整:DSD:协作研究:深度学习的快速原型 HPC 环境
- 批准号:
1439052 - 财政年份:2014
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Rapid Prototyping HPC Environment for Deep Learning
XPS:完整:DSD:协作研究:深度学习的快速原型 HPC 环境
- 批准号:
1439007 - 财政年份:2014
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Moving the Abyss: Database Management on Future 1000-core Processors
XPS:完整:DSD:协作研究:移动深渊:未来 1000 核处理器上的数据库管理
- 批准号:
1438967 - 财政年份:2014
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Collaborative Research: Rapid Prototyping HPC Environment for Deep Learning
XPS:完整:DSD:协作研究:深度学习的快速原型 HPC 环境
- 批准号:
1439005 - 财政年份:2014
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant