CAREER: Computational Geometry, Mesh Generation, Geometric Modeling
职业:计算几何、网格生成、几何建模
基本信息
- 批准号:0846872
- 负责人:
- 金额:$ 40.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT Geometric modeling for simulation of complex physical phenomena raises many challenges including algorithmic efficiency, practicality, scalability, robustness, theoretical guarantees, and compatibility with the emerging numerical methods. We study solutions for geometric discretization problems for spatial domains (encountered in conventional scientific computing) and for space-time domains (motivated by the next-generation numerical methods being developed for solving PDEs directly in the space-time continuum). Our approach combines the strengths of theoretical algorithms (time complexity, output size optimality, and quality guarantees) and practical heuristics (ease of implementation, performance in practice, scalability). Two broad classes of problems are studied: (i) We develop fast, sequential and parallel algorithms and software to compute premium-quality, size-optimal, simplicial and cubical meshes of spatial domains which can evolve as the simulation progress for isotropic and anisotropic problems. (ii) We develop scalable, provably-good meshing algorithms and software to compute space-time triangulations which enables us to perform simulations directly in the space-time domain. The algorithms and the software tools developed within this project are being integrated with applications and contributing to the fundamental research in engineering, scientific computing, solid modeling, computer-aided design, graphics, geographic information systems, computational biology, visualization and molecular modeling. As a result, this project has broader impact across a number of scientific, medical and industrial fields. Moreover, the project has academic impact through the inclusion of underrepresented groups, the development of interdisciplinary courses which focus on linking fundamental concepts in theoretical areas such as graph theory, geometry and topology to application problems in biology and engineering.
复杂物理现象模拟的几何建模提出了许多挑战,包括算法效率、实用性、可扩展性、鲁棒性、理论保证以及与新兴数值方法的兼容性。 我们研究空间域的几何离散化问题的解决方案(在传统的科学计算中遇到的)和时空域(由下一代数值方法直接在时空连续体中求解偏微分方程的动机)。 我们的方法结合了理论算法(时间复杂度,输出大小最优性和质量保证)和实际的算法(易于实现,在实践中的性能,可扩展性)的优势。 研究了两大类问题:(i)我们开发了快速,顺序和并行算法和软件来计算优质,尺寸最优,简单和立方体网格的空间域,可以演变为各向同性和各向异性问题的模拟进展。 (ii)我们开发了可扩展的,证明良好的网格算法和软件来计算时空三角剖分,使我们能够直接在时空域进行模拟。 该项目开发的算法和软件工具正在与应用程序集成,并有助于工程,科学计算,实体建模,计算机辅助设计,图形学,地理信息系统,计算生物学,可视化和分子建模的基础研究。因此,该项目在许多科学,医学和工业领域产生了更广泛的影响。 此外,该项目通过纳入代表性不足的群体,开发跨学科课程,重点是将图论,几何和拓扑学等理论领域的基本概念与生物学和工程学中的应用问题联系起来,从而产生学术影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alper Ungor其他文献
Alper Ungor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alper Ungor', 18)}}的其他基金
Optimal Triangulations for Scientific Computing
科学计算的最佳三角测量
- 批准号:
0830209 - 财政年份:2008
- 资助金额:
$ 40.06万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational Tropical Geometry and its Applications
计算热带几何及其应用
- 批准号:
MR/Y003888/1 - 财政年份:2024
- 资助金额:
$ 40.06万 - 项目类别:
Fellowship
Computational topology and geometry for systems biology
系统生物学的计算拓扑和几何
- 批准号:
EP/Z531224/1 - 财政年份:2024
- 资助金额:
$ 40.06万 - 项目类别:
Research Grant
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
- 批准号:
2317280 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Standard Grant
Travel: Student Travel Grant for 2023 Computational Geometry Week
旅行:2023 年计算几何周学生旅行补助金
- 批准号:
2321292 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Standard Grant
Combinatorial, Computational, and Applied Algebraic Geometry, Seattle 2022
组合、计算和应用代数几何,西雅图 2022
- 批准号:
2142724 - 财政年份:2022
- 资助金额:
$ 40.06万 - 项目类别:
Standard Grant
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群作用和辛技术
- 批准号:
RGPIN-2017-06901 - 财政年份:2022
- 资助金额:
$ 40.06万 - 项目类别:
Discovery Grants Program - Individual
Computational Information Geometry/Neuroinformatics
计算信息几何/神经信息学
- 批准号:
RGPIN-2020-04015 - 财政年份:2022
- 资助金额:
$ 40.06万 - 项目类别:
Discovery Grants Program - Individual
Bringing upper and lower bounds closer in computational geometry
使计算几何中的上限和下限更加接近
- 批准号:
567959-2022 - 财政年份:2022
- 资助金额:
$ 40.06万 - 项目类别:
Postgraduate Scholarships - Doctoral
Visibility in Computational Geometry
计算几何中的可见性
- 批准号:
574590-2022 - 财政年份:2022
- 资助金额:
$ 40.06万 - 项目类别:
University Undergraduate Student Research Awards