Optimal Triangulations for Scientific Computing
科学计算的最佳三角测量
基本信息
- 批准号:0830209
- 负责人:
- 金额:$ 12.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
OPTIMAL TRIANGULATIONS FOR SCIENTIFIC COMPUTINGABSTRACT FOR PROPOSAL#0830209Recent progress in scientific computing motivates new triangulationproblems. As new numerical methods being developed, new geometricconstraint formulations that are key in the accuracy and convergenceanalysis of these methods emerge. In this two-year project, practicaland theoretically sound algorithmic solutions for a number oftriangulation problems will be studied. More importantly, new softwarebased on these solutions will be developed and made available to thepublic. In particular, first ever software for computing acute andnon-obtuse triangulation problems will be deployed. Such software aresought for in scientific computing as a geometric tool to be coupledwith the widely used finite volume methods as well as in graphicsapplications. Practical algorithmic solutions for other triangulationproblems such as minimum weight Steiner triangulations which isexpected to find use in networking applications, will also be studied.In addition, parallelization of the aformentioned algorithmicsolutions will be studied within this project. The project will ensureits broader impact through distribution and integration of new robustsoftware. Project personnel consists of one graduate student that willbe selected among underrepresented groups in engineering.____________________________________________
科学计算的最佳三角剖分问题科学计算的最新进展激发了新的三角剖分问题。随着新的数值方法的发展,新的几何约束公式,这些方法的精度和收敛性分析的关键出现。在这个为期两年的项目中,将研究一些三角测量问题的实际和理论上合理的算法解决方案。更重要的是,基于这些解决方案的新软件将被开发并提供给公众。特别是,第一个软件计算急性和非钝角三角问题将部署。这样的软件在科学计算中应该作为几何工具与广泛使用的有限体积法以及图形应用相结合。其他三角测量问题的实际算法解决方案,如最小权Steiner三角测量,预计将在网络应用中使用,也将进行研究。此外,上述算法解决方案的并行化将在本项目中进行研究。该项目将通过分发和整合新的强大软件来确保其更广泛的影响。项目人员由一名研究生组成,将从代表性不足的工程学群体中选出。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alper Ungor其他文献
Alper Ungor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alper Ungor', 18)}}的其他基金
CAREER: Computational Geometry, Mesh Generation, Geometric Modeling
职业:计算几何、网格生成、几何建模
- 批准号:
0846872 - 财政年份:2009
- 资助金额:
$ 12.52万 - 项目类别:
Standard Grant
相似海外基金
Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
- 批准号:
2303987 - 财政年份:2023
- 资助金额:
$ 12.52万 - 项目类别:
Standard Grant
Triangulations: linking geometry and topology with combinatorics
三角测量:用组合学将几何和拓扑联系起来
- 批准号:
DP220102588 - 财政年份:2023
- 资助金额:
$ 12.52万 - 项目类别:
Discovery Projects
Veering Triangulations and Visualization
转向三角测量和可视化
- 批准号:
2203993 - 财政年份:2022
- 资助金额:
$ 12.52万 - 项目类别:
Standard Grant
MPS-Ascend: Triangulations of the Product of Two Simplices and Matroids from Fine Mixed Subdivisions
MPS-Ascend:精细混合细分的两个单纯形和拟阵乘积的三角剖分
- 批准号:
2213323 - 财政年份:2022
- 资助金额:
$ 12.52万 - 项目类别:
Fellowship Award
Affine cluster algebras as dynamical systems, surface triangulations, quiver representations and friezes
仿射簇代数作为动力系统、表面三角测量、箭袋表示和饰带
- 批准号:
21F20788 - 财政年份:2021
- 资助金额:
$ 12.52万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A study on graph colorings of triangulations and quadrangulations using the method of partial duality
部分对偶法对三角剖分和四边形图形着色的研究
- 批准号:
21K13831 - 财政年份:2021
- 资助金额:
$ 12.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Algorithms and Data Structures for Robust 3D Geometry Processing via Intrinsic Triangulations
职业:通过内在三角测量进行鲁棒 3D 几何处理的算法和数据结构
- 批准号:
1943123 - 财政年份:2020
- 资助金额:
$ 12.52万 - 项目类别:
Continuing Grant
Trisections, triangulations and the complexity of manifolds
三等分、三角剖分和流形的复杂性
- 批准号:
DP190102259 - 财政年份:2019
- 资助金额:
$ 12.52万 - 项目类别:
Discovery Projects
Existence of 5-chromatic locally planar triangulations on closed surfaces and the weak Grunbaum's conjecture
闭曲面上五色局部平面三角剖分的存在性及弱格伦鲍姆猜想
- 批准号:
17K14239 - 财政年份:2017
- 资助金额:
$ 12.52万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On the combinatorics of veering triangulations
关于转向三角测量的组合学
- 批准号:
1936817 - 财政年份:2017
- 资助金额:
$ 12.52万 - 项目类别:
Studentship