CAREER: Electrically- and Optically-Controlled Self-Assembly in Liquid Crystals
职业:液晶中的电控和光控自组装
基本信息
- 批准号:0847782
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-01-15 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal 0847782, CAREER: Electrically- & optically-controlled self-assembly in liquid crystals Ivan I. Smalyukh, Asst. Professor of Physics, Univ. of Colorado at BoulderTECHNICAL SUMMARY:The PI will conduct interdisciplinary research at the interfaces of liquid crystal (LC) physics, nanoscience, and photonics, focusing on fundamental and applied aspects of self-assembly in LC composite materials. He seeks to identify the organizing principles behind self-organization of nano- and micro-sized particles dispersed in LC mesophases ranging from the classical thermotropic nematic to the novel phases composed of bent-core molecules, and to those formed by DNA and live bacteria. PI will establish how director structures around nano- and micro-sized particles immersed in LCs depend on particle?s shape, size, surface treatment, type of the LC mesophase, and applied external fields. He will use topological defects, nano-scale periodic defect arrays in LC blue phases, and strongly-distorted director structures for spatial patterning of particles. LC?s sensitivity to external fields, surface treatment, temperature, and light will enable unprecedented degrees of control over formed self-assembled structures of molecules and inclusions of various shapes and chemical composition. In order to engage this class of problems, the PI will utilize fluorescence-detectable nano- and micro-sized particles ranging from nanocrystals to live bacteria, so that their spatial localization and alignment in the LC samples can be revealed using fluorescence confocal imaging. To get insights into the physics phenomena behind the self-assembly, optical imaging and laser manipulation will be combined synergistically with freeze fracture transmission electron microscopy and synchrotron x-ray micro-beam diffraction, so that the hierarchical self-assembly structures from nanometer to tens of microns length scales can be known. The fundamental phenomena will be examined in the broader contexts ranging from development of self-assembly-based tunable optical metamaterials to understanding bacteria-extracellular matrix interactions in biofilms. This work will advance knowledge of self-assembly in complex fluids and will impinge on fields as diverse as nano-scale interactions and ensuing collective behavior, novel display technologies, efficient conversion of solar energy to electricity using inexpensive organic solar cells, metamaterial fabrication, and bacterial biofilms. PI is will integrate the proposed research projects into a broad range of education and outreach activities.NON-TECHNICAL SUMMARY:PI is researching organizing principles of nanoparticle and molecular self-assembly into precisely controlled structures in liquid crystals. Fundamental understanding of this ?smart? assembly will shed light on biological organization at the cellular and molecular levels and will enable development of new electrically- and optically-controlled materials with unique properties needed for wide-angle beam steering, efficient conversion of solar energy into electricity, and for practical devices of importance to society, such as flexible displays and data storage devices. PI will integrate this research into educational and outreach programs, including ?Light, Color, & Matter? Wizard Shows in elementary and secondary schools, Science Tours for high school students, advising student chapters of professional societies, providing research experiences for students and faculty from minority-serving institutions and helping them to define their educational and research goals, teaching ?Liquid Crystals: From Fundamentals to Applications? conference short courses for liquid crystal industry, participating in the SPIE visiting lecturer program by giving public lectures worldwide, and organizing international conferences and inter-continental advanced materials and photonics (I-CAMP) summer schools. Lectures of the I-CAMP summer schools will be webcast in real time and then transformed into web-based video archives and interactive tutorials. Moreover, these summer schools will be integrated with outreach forums and career development programs for students and postdoctoral fellows and will attract underrepresented minority participants.
提案0847782,职业生涯:液晶中的电光控制自组装 伊万岛Smalyukh,物理学助理教授,科罗拉多大学博尔德分校技术总结:PI将在液晶(LC)物理,纳米科学和光子学的接口进行跨学科研究,重点是LC复合材料自组装的基础和应用方面。他试图确定分散在LC中间相中的纳米和微米级颗粒的自组织背后的组织原理,从经典的热致液晶到由微核分子组成的新相,以及由DNA和活细菌形成的相。PI将建立如何在纳米和微米尺寸的粒子周围的指向矢结构浸入液晶取决于粒子?的形状,大小,表面处理,LC中间相的类型,和施加的外部场。他将使用拓扑缺陷,LC蓝相中的纳米级周期性缺陷阵列,以及用于粒子空间图案化的强烈扭曲的指向矢结构。信用卡?它对外场、表面处理、温度和光的敏感性将使人们能够对形成的分子自组装结构以及各种形状和化学成分的内含物进行前所未有的控制。为了解决这类问题,PI将利用荧光可检测的纳米和微米颗粒,范围从纳米晶体到活细菌,以便可以使用荧光共聚焦成像来揭示它们在LC样品中的空间定位和排列。为了深入了解自组装背后的物理现象,光学成像和激光操纵将与冷冻断裂透射电子显微镜和同步加速器X射线微束衍射协同结合,从而可以了解从纳米到数十微米长度尺度的分级自组装结构。基本现象将在更广泛的背景下进行检查,从基于自组装的可调光学超材料的发展,以了解生物膜中的细菌-细胞外基质相互作用。这项工作将推进复杂流体中自组装的知识,并将影响纳米尺度相互作用和随之而来的集体行为,新型显示技术,使用廉价的有机太阳能电池,超材料制造和细菌生物膜将太阳能有效转换为电能等领域。PI将把建议的研究项目整合到广泛的教育和推广活动中。非技术概要:PI正在研究纳米粒子和分子自组装成液晶中精确控制结构的组织原理。对此基本了解?聪明吗组装将揭示细胞和分子水平上的生物组织,并将使新的电控和光控材料的开发成为可能,这些材料具有广角光束控制、太阳能有效转化为电能以及对社会具有重要意义的实用设备(如柔性显示器和数据存储设备)所需的独特性能。PI将把这项研究纳入教育和推广计划,包括?光,颜色,物质?小学和中学的巫师表演,高中学生的科学图尔斯之旅,为专业协会的学生分会提供咨询,为少数民族服务机构的学生和教师提供研究经验,帮助他们确定自己的教育和研究目标,教学?液晶:从基础到应用?此外,公司还举办了液晶产业的国际会议短期课程,参加SPIE客座讲师计划,在全球范围内进行公开讲座,并组织国际会议和洲际先进材料与光子学(I-CAMP)暑期学校。I-CAMP暑期学校的讲座将在网上以真实的时间播放,然后转换成基于网络的视频档案和互动教程。此外,这些暑期学校将与学生和博士后研究员的外联论坛和职业发展方案相结合,并将吸引代表性不足的少数群体参与者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Smalyukh其他文献
Ivan Smalyukh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Smalyukh', 18)}}的其他基金
PFI-TT: Energy-Efficient Smart-Privacy Windows made of Dynamic Crystals
PFI-TT:由动态晶体制成的节能智能隐私窗
- 批准号:
2044762 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Liquid Crystals Gordon Research Conference "Soft Order and Topology Motives in Biomedicine, Nanoscience, Cosmology, Living Matter and Emergent Industries"
液晶戈登研究会议“生物医学、纳米科学、宇宙学、生命物质和新兴产业中的软秩序和拓扑动机”
- 批准号:
1923364 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Topological Solitons in Liquid Crystals and Colloids
液晶和胶体中的拓扑孤子
- 批准号:
1810513 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Self-assembly of Topologically Distinct Colloid Particles in Partially Ordered Fluids
部分有序流体中拓扑不同的胶体颗粒的自组装
- 批准号:
1410735 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似海外基金
EAGER: New interconnect for the perovskite-silicon tandem solar cell: optically transparent and electrically conductive multilayer film
EAGER:钙钛矿-硅串联太阳能电池的新型互连件:光学透明且导电的多层薄膜
- 批准号:
2314036 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Electrically and Optically Active Nanostructures and Interfaces
电活性和光学活性纳米结构和界面
- 批准号:
RGPIN-2019-06545 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Electrically and Optically Active Nanostructures and Interfaces
电活性和光学活性纳米结构和界面
- 批准号:
RGPIN-2019-06545 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Electrically and Optically Active Nanostructures and Interfaces
电活性和光学活性纳米结构和界面
- 批准号:
RGPAS-2019-00050 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Electrically and Optically Active Nanostructures and Interfaces
电活性和光学活性纳米结构和界面
- 批准号:
RGPIN-2019-06545 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Electrically and Optically Active Nanostructures and Interfaces
电活性和光学活性纳米结构和界面
- 批准号:
RGPIN-2019-06545 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Electrically and Optically Active Nanostructures and Interfaces
电活性和光学活性纳米结构和界面
- 批准号:
RGPAS-2019-00050 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Optically and electrically induced electron-spin transport in molecular systems
分子系统中的光和电诱导电子自旋传输
- 批准号:
1939576 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Studentship
Fabrication of optically and electrically functional materials based on industrially available cellulose derivatives via mild chemical modification and orientation control
通过温和的化学改性和取向控制,基于工业上可用的纤维素衍生物制造光学和电功能材料
- 批准号:
23580228 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Crystallography and Properties of Lithium Niobate-Tantalate Solid Solutions:towards novel optically isotropic, electrically polar materials
铌酸锂-钽酸锂固溶体的晶体学和性质:新型光学各向同性、电极性材料
- 批准号:
EP/F042787/1 - 财政年份:2008
- 资助金额:
$ 60万 - 项目类别:
Research Grant














{{item.name}}会员




