Self-assembly of Topologically Distinct Colloid Particles in Partially Ordered Fluids
部分有序流体中拓扑不同的胶体颗粒的自组装
基本信息
- 批准号:1410735
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL ABSTRACTLiquid crystals are unquestionably one of the most commercially important forms of condensed matter. They are widely used in displays, electro-optic and photonic devices and for energy conversion. This usefulness arises from the ability to control the orientation of these cigar shaped molecules with electric and magnetic fields. New materials allow ever more complex structures to be engineered and increase the functionality of liquid crystalline materials. The Principal Investigator (PI) and his team will develop new types of liquid crystals consisting of tiny colloidal particles dispersed in a liquid crystal medium. The colloidal particles will have different shapes (topologies) which will determine the types of structures that the liquid crystals will develop when subjected to electric and magnetic fields. They will study the behavior of these 'topological colloids' to learn how the interactions between the nanoparticles and the liquid crystal molecules determine the structure with the goal of developing a "recipe book" to organize the particles into precisely controlled structures. Understanding of fundamental underpinnings of this 'topology-guided' self-assembly may enable development of new electrically- and optically-controlled materials with unique properties needed for practical devices of importance to society, such as flexible displays and data storage devices. The PI will integrate this research with a broad range of synergistic educational and outreach activities, including 'Light, Color, & Matter' Wizard Shows in elementary and secondary schools, Science Tours for high school students, advising student chapters of professional societies and providing research experiences for students and faculty from minority-serving institutions.TECHNICAL ABSTRACTThe PI seeks to develop a new soft matter system dubbed 'topological colloids' and identify the fundamental organizing principles behind topology-dictated self-assembly of colloidal particles in liquid crystals (LCs). This research will involve the design of methods for scalable fabrication of topologically distinct colloidal particles of different sizes and their dispersions in LCs, experimental study and modeling of the interplay between the topology of particles, director fields, and topological defects, as well as explorations of switchable colloidal self-assembly and alignment controlled by electric and magnetic fields and light. The emerging interdisciplinary scientific frontiers are at the nexus of nanoscience, condensed matter physics, and topology/mathematics. From subatomic particles to cosmology, many phenomena arise from the topological interaction of fields, surfaces, and monopole or string-like defects. This topological interplay is constrained by theorems from topology but is hard to be probed experimentally. The model system of topological colloids may enable direct experimental studies of such topological interactions, thus impinging on many scientific fields, well beyond the specific goals of the proposed research activity. The research activity is transformative in nature and expected to lay the groundwork for new research directions ranging from topology-constrained self-assembly to experimental studies of low-dimensional topology. Beyond the exploration of physical underpinnings, the experimental arena PI and his students are developing may enable scaffolding of nanoparticles, self-assembly of reconfigurable topological memory devices, as well as new electro-optic effects based on switching between different multi-stable director fields and orientations of particles. The fundamental phenomena will be examined in contexts of self-assembly-based fabrication of novel nanostructured composites and may lead to practical LC devices of importance to society, such as novel displays. The research is integrated with a broad range of synergistic outreach and educational activities ranging from Wizard Shows in elementary and secondary schools to teaching short courses for liquid crystal industry and to organizing international conferences and summer schools.
液晶无疑是最具商业价值的凝聚态物质之一。它们广泛应用于显示、电光和光子器件以及能量转换。这种有用性来自于用电场和磁场控制这些雪茄状分子的方向的能力。新材料允许设计更复杂的结构,并增加液晶材料的功能。首席研究员(PI)和他的团队将开发由分散在液晶介质中的微小胶体颗粒组成的新型液晶。胶体颗粒将具有不同的形状(拓扑结构),这将决定液晶在受到电场和磁场作用时将形成的结构类型。他们将研究这些“拓扑胶体”的行为,以了解纳米颗粒和液晶分子之间的相互作用如何决定其结构,目标是开发一本“食谱”,将颗粒组织成精确控制的结构。了解这种“拓扑引导”自组装的基本基础,可以开发出具有独特性能的新型电和光控制材料,这些材料对于社会重要的实用设备(如柔性显示器和数据存储设备)是必需的。PI将把这项研究与广泛的协同教育和推广活动结合起来,包括在小学和中学举办的“光、颜色和物质”魔术表演,为高中生提供科学之旅,为专业协会的学生分会提供建议,并为少数民族服务机构的学生和教师提供研究经验。技术摘要:PI寻求开发一种被称为“拓扑胶体”的新软物质系统,并确定液晶(lc)中胶体粒子拓扑决定自组装背后的基本组织原理。本研究将涉及设计可扩展制造不同尺寸的拓扑不同胶体粒子及其在lc中的分散的方法,实验研究和模拟粒子拓扑、引导场和拓扑缺陷之间的相互作用,以及探索由电场、磁场和光控制的可切换胶体自组装和排列。新兴的跨学科科学前沿是纳米科学、凝聚态物理和拓扑学/数学的联系。从亚原子粒子到宇宙学,许多现象都是由场、表面、单极子或弦状缺陷的拓扑相互作用产生的。这种拓扑相互作用受到拓扑定理的约束,但很难通过实验来探索。拓扑胶体的模型系统可以使这种拓扑相互作用的直接实验研究成为可能,从而影响到许多科学领域,远远超出了所提议的研究活动的具体目标。该研究活动具有变革性,有望为从拓扑约束自组装到低维拓扑的实验研究等新的研究方向奠定基础。除了物理基础的探索之外,PI和他的学生正在开发的实验舞台可以实现纳米粒子的脚手架,可重构拓扑存储器件的自组装,以及基于不同多稳定指向场和粒子方向之间切换的新的电光效应。这些基本现象将在基于自组装的新型纳米结构复合材料制造的背景下进行研究,并可能导致对社会具有重要意义的实用LC器件,例如新型显示器。该研究与广泛的协同推广和教育活动相结合,从小学和中学的魔术表演到液晶行业的短期课程教学,再到组织国际会议和暑期学校。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Smalyukh其他文献
Ivan Smalyukh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Smalyukh', 18)}}的其他基金
PFI-TT: Energy-Efficient Smart-Privacy Windows made of Dynamic Crystals
PFI-TT:由动态晶体制成的节能智能隐私窗
- 批准号:
2044762 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Liquid Crystals Gordon Research Conference "Soft Order and Topology Motives in Biomedicine, Nanoscience, Cosmology, Living Matter and Emergent Industries"
液晶戈登研究会议“生物医学、纳米科学、宇宙学、生命物质和新兴产业中的软秩序和拓扑动机”
- 批准号:
1923364 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Topological Solitons in Liquid Crystals and Colloids
液晶和胶体中的拓扑孤子
- 批准号:
1810513 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
CAREER: Electrically- and Optically-Controlled Self-Assembly in Liquid Crystals
职业:液晶中的电控和光控自组装
- 批准号:
0847782 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似国自然基金
ENKD1在纺锤体定向中的作用及分子机制
- 批准号:32000490
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
肌球蛋白18B通过影响微丝应力纤维组装调控肿瘤细胞迁移的机制研究
- 批准号:31970660
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
- 批准号:21171046
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
早型星系的测光研究
- 批准号:10973011
- 批准年份:2009
- 资助金额:50.0 万元
- 项目类别:面上项目
嵌段共聚物多级自组装的多尺度模拟
- 批准号:20974040
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
"锁住"的金属中心手性-手性笼络合物的动态CD光谱研究与应用开发
- 批准号:20973136
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
功能有机配体新颖设计与有机金属超分子导向组装
- 批准号:20772152
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 39万 - 项目类别:
Fellowship
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
NSF PRFB FY23: Effects of bioengineering on community assembly and ecosystem functioning in a soil microbial community
NSF PRFB FY23:生物工程对土壤微生物群落的群落组装和生态系统功能的影响
- 批准号:
2305961 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Fellowship Award
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
- 批准号:
2309886 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
CAREER: Intensifying multi-material additive manufacturing using advective assembly
职业:使用平流装配强化多材料增材制造
- 批准号:
2339472 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Assembly of Novel Branched Ionic Polymers: Chirality Induction and 2D Heterostructures
新型支化离子聚合物的组装:手性感应和二维异质结构
- 批准号:
2404081 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Deciphering and Directing Hierarchical Self-Assembly in Hybrid Chiral Films
破译和指导混合手性薄膜中的分层自组装
- 批准号:
2344586 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Revolutionary Rotors: A Robotic Flywheel Assembly Line
革命性转子:机器人飞轮装配线
- 批准号:
10098069 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Collaborative R&D














{{item.name}}会员




