REU Site: Investigations in Combinatorics, Geometry and Knot Theory
REU 网站:组合学、几何学和结理论的研究
基本信息
- 批准号:0850959
- 负责人:
- 金额:$ 18.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-01 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The REU Site: Investigations in Combinatorics, Geometry and Knot Theory will engage a group of eight undergraduate students in significant mathematical research for eight weeks during the summers of 2009-2011. During the summer program participants will increase their mathematical maturity and independence by immersing themselves in research. They will choose a research topic introduced by experienced faculty mentors, conduct background reading and relevant literature searches, collaborate with their peers, consult with their mentors, give formal presentations, make independent discoveries, design and present a poster for their project, and write a journal-style paper. As a result of these activities, participants will have had a comprehensive and cohort research experience. After completion of their summer projects, student papers will be posted on the program's website and/or submitted to professional journals. Moreover, participants will be encouraged and supported in their efforts to present their results both at their home institutions and at relevant professional meetings. Being introduced to the mathematical community at large in this fashion will further serve to prepare participants for careers in mathematics. One of the most effective ways to create and sustain a diverse, vibrant, and prepared mathematical workforce is to engage talented students in meaningful research experiences early in their careers. The overarching goal of this program is to help achieve the goal of maintaining such a community of mathematicians. The program's commitment to diversity, aggressive recruiting, and broad dissemination will help ensure a continued diverse population enters the mathematical community. Involving students in research and in the community at large not only prepares them for careers, but also introduces them to the exhilaration of doing mathematics. The final outcome of this program, then, is more than the immediate advances and discoveries found in the context of summer research projects. It is a new generation of diverse, prepared, enthusiastic, and talented mathematicians who will be contributing members of the community for years to come.
REU网站:在组合数学,几何和纽结理论的调查将从事一组八名本科生在重要的数学研究八个星期,在2009年至2011年的夏天。 在暑期课程期间,参与者将通过沉浸在研究中来提高他们的数学成熟度和独立性。 他们将选择一个由经验丰富的教师导师介绍的研究课题,进行背景阅读和相关文献检索,与同行合作,与导师协商,进行正式演讲,独立发现,设计和展示他们的项目海报,并写一篇期刊风格的论文。 通过这些活动,参与者将获得全面的队列研究经验。 完成暑期项目后,学生论文将发布在该计划的网站上和/或提交给专业期刊。 此外,还将鼓励和支持与会者努力在本国机构和相关专业会议上介绍其成果。 以这种方式被介绍给数学界,将进一步帮助参与者为数学职业做好准备。 创建和维持一个多元化,充满活力和准备好的数学劳动力的最有效方法之一是让有才华的学生在职业生涯的早期参与有意义的研究经验。 该计划的总体目标是帮助实现维护这样一个数学家社区的目标。 该计划的多样性,积极的招聘和广泛的传播的承诺将有助于确保持续多样的人口进入数学界。 让学生参与研究和整个社区不仅为他们的职业生涯做好准备,而且还向他们介绍了做数学的兴奋。 因此,该计划的最终成果不仅仅是在夏季研究项目中发现的直接进展和发现。 这是一个多样化的,有准备的,热情的,和有才华的数学家谁将在未来几年贡献社会成员的新一代。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rolland Trapp其他文献
Arithmeticity and Hidden Symmetries of Fully Augmented Pretzel Link Complements
完全增强的椒盐卷饼链接互补的算术性和隐藏对称性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jeffrey S. Meyer;Christian Millichap;Rolland Trapp - 通讯作者:
Rolland Trapp
Belted sum decompositions of fully augmented links
全增强链接的带状和分解
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Porter Morgan;Brian Ransom;Dean Spyropoulos;Cameron Ziegler;Rolland Trapp - 通讯作者:
Rolland Trapp
A linear representation of the mapping class group M and the theory of winding numbers
- DOI:
10.1016/0166-8641(92)90153-q - 发表时间:
1992-01 - 期刊:
- 影响因子:0.6
- 作者:
Rolland Trapp - 通讯作者:
Rolland Trapp
TWIST SEQUENCES AND VASSILIEV INVARIANTS
扭转序列和 VASSILIEV 不变量
- DOI:
10.1142/s0218216594000289 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Rolland Trapp - 通讯作者:
Rolland Trapp
STICK AND RAMSEY NUMBERS OF TORUS LINKS
环面连杆的棒数和拉姆西数
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Maribeth Johnson;S. Mills;Rolland Trapp - 通讯作者:
Rolland Trapp
Rolland Trapp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rolland Trapp', 18)}}的其他基金
PRISM: CSUSB Strengthening the Scientific Workforce
PRISM:CSUSB 加强科学队伍
- 批准号:
1035120 - 财政年份:2010
- 资助金额:
$ 18.99万 - 项目类别:
Continuing Grant
相似国自然基金
新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
- 批准号:52172255
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
- 批准号:41340011
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Investigations in Geometry and Knot Theory
REU 网站:几何和结理论的研究
- 批准号:
2050894 - 财政年份:2021
- 资助金额:
$ 18.99万 - 项目类别:
Continuing Grant
REU Site: Archaeological Investigations of Colonial Maryland
REU 遗址:马里兰殖民地考古调查
- 批准号:
1950646 - 财政年份:2020
- 资助金额:
$ 18.99万 - 项目类别:
Standard Grant
REU Site: Investigations in Geometry and Knot Theory
REU 网站:几何和结理论的研究
- 批准号:
1758020 - 财政年份:2018
- 资助金额:
$ 18.99万 - 项目类别:
Standard Grant
REU Site: CollaborativE Multidisciplinary Investigations Through Undergraduate Research Experiences (CEMITURE)
REU 网站:通过本科生研究经验进行协作多学科调查 (CEMITURE)
- 批准号:
1757016 - 财政年份:2018
- 资助金额:
$ 18.99万 - 项目类别:
Standard Grant
REU Site: Investigations in Geometry and Knot Theory
REU 网站:几何和结理论的研究
- 批准号:
1461286 - 财政年份:2015
- 资助金额:
$ 18.99万 - 项目类别:
Continuing Grant
REU Site: CollaborativE Multidisciplinary Investigations Through Undergraduate Research Experiences (CEMITURE)
REU 网站:通过本科生研究经验进行协作多学科调查 (CEMITURE)
- 批准号:
1359229 - 财政年份:2014
- 资助金额:
$ 18.99万 - 项目类别:
Standard Grant
REU Site: Evaluating the Effectiveness of Stream Restoration Projects Based on Natural Channel Design Concepts Using Process-Based Investigations
REU 网站:使用基于过程的调查评估基于自然河道设计概念的河流恢复项目的有效性
- 批准号:
1358908 - 财政年份:2014
- 资助金额:
$ 18.99万 - 项目类别:
Continuing Grant
REU Site: Investigations in Geometry and Knot Theory
REU 网站:几何和结理论的研究
- 批准号:
1156608 - 财政年份:2012
- 资助金额:
$ 18.99万 - 项目类别:
Standard Grant
REU Site: Marine Science Investigations at the Bodega Marine Laboratory
REU 站点:Bodega 海洋实验室的海洋科学调查
- 批准号:
0753226 - 财政年份:2008
- 资助金额:
$ 18.99万 - 项目类别:
Continuing Grant
REU Site: Interdisciplinary Investigations at New Philadelphia
REU 站点:新费城的跨学科调查
- 批准号:
0752834 - 财政年份:2008
- 资助金额:
$ 18.99万 - 项目类别:
Standard Grant