REU Site: Investigations in Geometry and Knot Theory

REU 网站:几何和结理论的研究

基本信息

  • 批准号:
    1461286
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

The REU Sites project "Investigations in Geometry and Knot Theory" is an 8-week program for 8 undergraduates at California State University, San Bernardino. The program aims to further our understanding in two vibrant areas of mathematics: Differential Geometry and Knot Theory. In each of three summers, each of the eight participants will be presented with background material in each of these areas and given the opportunity to pursue open-ended research problems in the field of their choice. A group of students will work in each field, with significant mathematical interaction occurring between students working in the same field. Moreover, participants will work closely with their mentors in an enriching environment to complete background reading related to their topic, give presentations on relevant material, conduct research, and begin writing a journal-style paper. As the summer progresses, students will perform their own literature searches, make independent discoveries and engage in creative mathematical research. Thus participants will have a comprehensive and cohort research experience. The program will advance discovery through actively engaging undergraduate students in mathematical research and strongly encouraging them to become active participants in the mathematical community.Overall, both fields are rich with a variety of questions to explore. The unsolved problems presented in the field of Differential Geometry range widely from determining efficient methods of expressing curvature of surfaces, to developing theories regarding the types of curvature that one might possibly encounter on any particular surface. It is of particular emphasis that an example of the type of surface one might consider is our universe itself! This component of the project has two main goals. On any smooth surface, the Riemann Curvature Tensor is an object that encodes the surface's curvature at every point on the surface. It is known that this object can be expressed as a combination of other types of curvatures, and we aim to understand the nature of how different curvature tensors could be expressed according to this decomposition. Previous results present a deep relationship between this and the ability to embed the surface into flat space, and a better understanding of this relationship both aims to distinguish between curvature tensors and sheds light on this embedding question. The second goal aims to collect the known work in a particular class of surfaces and attempt to unify the work in this area into one theory, complete with examples illustrating different aspects of this theory. The Knot Theory component of this project focuses on problems involving knot invariants. In general, knot theory has applications in recombinant DNA and synthetic chemistry; however, participants will focus their attention on several significant knot invariants related to the Jones polynomial of a link. As the Jones polynomial is one of the most subtle and significant discoveries in the last thirty years, these invariants are part of an active and vibrant area of mathematical research. Overall, these questions are of interest to mathematicians since they generally seek to understand the structure of how the universe works, but they are also of interest to the scientific community because of the potential applications of our findings.
加州大学圣贝纳迪诺分校的SITES项目“几何和纽结理论研究”是一个为期8周的项目,面向加州州立大学圣贝纳迪诺的8名本科生。该计划旨在加深我们在两个充满活力的数学领域的理解:微分几何和纽结理论。在三个暑假中的每一个暑假,八名参与者每人都将收到这些领域的背景材料,并有机会在他们选择的领域内进行开放式研究问题。一组学生将在每个领域工作,在同一领域工作的学生之间会发生重大的数学互动。此外,参与者将在一个丰富的环境中与他们的导师密切合作,完成与其主题相关的背景阅读,就相关材料进行演讲,进行研究,并开始撰写期刊式的论文。随着暑假的进行,学生们将进行自己的文献搜索,进行独立的发现,并从事创造性的数学研究。因此,参与者将有一个全面和队列的研究经验。该计划将通过积极让本科生参与数学研究来促进发现,并强烈鼓励他们成为数学社区的积极参与者。总体而言,这两个领域都有丰富的问题可供探索。在微分几何领域中出现的未解决的问题范围广泛,从确定表示曲面曲率的有效方法,到发展关于在任何特定曲面上可能遇到的曲率类型的理论。值得特别强调的是,我们可以考虑的表面类型的一个例子是我们的宇宙本身!该项目的这一组成部分有两个主要目标。在任何光滑曲面上,黎曼曲率张量都是对曲面上每一点的曲率进行编码的对象。众所周知,这个对象可以表示为其他类型的曲率的组合,我们的目的是了解根据这种分解如何表示不同的曲率张量的本质。以前的结果表明,这与将曲面嵌入到平面空间的能力之间存在着深刻的关系,更好地理解这种关系既是为了区分曲率张量,也是为了揭示这个嵌入问题。第二个目标是收集一类特定曲面的已知工作,并试图将这一领域的工作统一到一个理论中,并用实例说明该理论的不同方面。本项目的纽结理论部分专注于涉及纽结不变量的问题。一般来说,纽结理论在重组DNA和合成化学中有应用;然而,参与者将把他们的注意力集中在与链接的琼斯多项式相关的几个重要的纽结不变量上。由于琼斯多项式是过去三十年中最微妙和最重要的发现之一,这些不变量是数学研究中活跃和充满活力的领域的一部分。总体而言,数学家对这些问题很感兴趣,因为它们通常试图了解宇宙如何运行的结构,但科学界也对它们感兴趣,因为我们的发现具有潜在的应用价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Corey Dunn其他文献

A common generalization of curvature homogeneity theories
  • DOI:
    10.1007/s00022-020-0528-5
  • 发表时间:
    2020-03-11
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Corey Dunn;Alexandro Luna;Sammy Sbiti
  • 通讯作者:
    Sammy Sbiti
Singer invariants and various types of curvature homogeneity

Corey Dunn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Corey Dunn', 18)}}的其他基金

REU Site: Investigations in Geometry and Knot Theory
REU 网站:几何和结理论的研究
  • 批准号:
    2050894
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
REU Site: Investigations in Geometry and Knot Theory
REU 网站:几何和结理论的研究
  • 批准号:
    1758020
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
REU Site: Investigations in Geometry and Knot Theory
REU 网站:几何和结理论的研究
  • 批准号:
    1156608
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
  • 批准号:
    52172255
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
  • 批准号:
    41340011
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

REU Site: Investigations in Geometry and Knot Theory
REU 网站:几何和结理论的研究
  • 批准号:
    2050894
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
REU Site: Archaeological Investigations of Colonial Maryland
REU 遗址:马里兰殖民地考古调查
  • 批准号:
    1950646
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
REU Site: Investigations in Geometry and Knot Theory
REU 网站:几何和结理论的研究
  • 批准号:
    1758020
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
REU Site: CollaborativE Multidisciplinary Investigations Through Undergraduate Research Experiences (CEMITURE)
REU 网站:通过本科生研究经验进行协作多学科调查 (CEMITURE)
  • 批准号:
    1757016
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
REU Site: CollaborativE Multidisciplinary Investigations Through Undergraduate Research Experiences (CEMITURE)
REU 网站:通过本科生研究经验进行协作多学科调查 (CEMITURE)
  • 批准号:
    1359229
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
REU Site: Evaluating the Effectiveness of Stream Restoration Projects Based on Natural Channel Design Concepts Using Process-Based Investigations
REU 网站:使用基于过程的调查评估基于自然河道设计概念的河流恢复项目的有效性
  • 批准号:
    1358908
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
REU Site: Investigations in Geometry and Knot Theory
REU 网站:几何和结理论的研究
  • 批准号:
    1156608
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
REU Site: Investigations in Combinatorics, Geometry and Knot Theory
REU 网站:组合学、几何学和结理论的研究
  • 批准号:
    0850959
  • 财政年份:
    2009
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
REU Site: Marine Science Investigations at the Bodega Marine Laboratory
REU 站点:Bodega 海洋实验室的海洋科学调查
  • 批准号:
    0753226
  • 财政年份:
    2008
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
REU Site: Interdisciplinary Investigations at New Philadelphia
REU 站点:新费城的跨学科调查
  • 批准号:
    0752834
  • 财政年份:
    2008
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了