Collaborative Research: Motivated Underreporting

合作研究:动机性少报

基本信息

  • 批准号:
    0850999
  • 负责人:
  • 金额:
    $ 9.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-10-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

This research examines three forms of survey measurement error and investigates the relations among them. The first form of measurement error affects questions designed to identify members of the population eligible for a given survey (for example, persons over 65 years old). Several studies find that members of the eligible population are underreported in screening interviews. Although no survey perfectly covers its target population, surveys aimed at specific subpopulations seem especially prone to undercover that particular population. The second form of measurement error involves filter questions. These are questions that, depending on how they are answered, either lead to additional follow-up questions or to the respondent's skipping out of the follow-up items. Many survey researchers believe that respondents are likely to give false answers to the filter questions in order to avoid the follow-up questions. As a result, many surveys ask the filter questions at the beginning of the questionnaire and administer the follow-up questions later on rather than interleaving the filter and follow-up questions. The final form of measurement error involves conditioning, or time-in-sample, effects. Over the last forty years, many survey researchers have suggested that respondents in ongoing panel surveys report fewer relevant events across waves of the panel survey and across time periods in a diary survey.What the three phenomena appear to have in common is underreporting motivated by the desire to reduce the effort needed to complete the questionnaire. But it is not clear whether these forms of error result from something the interviewers do, something the respondents do, or both. The proposed studies use both new experiments and analyze existing data to try to pinpoint the locus of these effects (interviewers versus respondents) and to explore the effectiveness of different methods for reducing these errors. The project will contribute to the improvement of various national statistics that are derived from survey items affected by these problems. The project also will further the training of graduate students and contribute to the professional training of survey researchers at both institutions. The research is supported by the Methodology, Measurement, and Statistics Program and a consortium of federal statistical agencies as part of a joint activity to support research on survey and statistical methodology.
本文研究了测量误差的三种形式,并探讨了它们之间的关系。第一种形式的测量误差影响设计用于确定符合特定调查条件的人口成员(例如,65岁以上的人)的问题。几项研究发现,在筛选访谈中,合格人群的成员被低估了。虽然没有一项调查能完全覆盖其目标人群,但针对特定亚人群的调查似乎特别容易掩盖该特定人群。测量误差的第二种形式涉及过滤问题。这些问题,取决于他们如何回答,要么导致额外的后续问题,要么导致被调查者跳过后续项目。许多调查研究人员认为,为了避免后续问题,受访者可能会对过滤问题给出错误的答案。因此,许多调查在问卷开始时询问过滤问题,然后管理后续问题,而不是将过滤问题和后续问题交织在一起。测量误差的最后一种形式涉及到条件作用或样本时间效应。在过去的四十年中,许多调查研究人员认为,在持续的小组调查中,受访者在小组调查的各个阶段和日记调查的各个时期报告的相关事件较少。这三种现象似乎有一个共同点,那就是为了减少完成问卷所需的努力而少报。但目前尚不清楚这些形式的错误是由采访者的行为造成的,还是被调查者的行为造成的,还是两者兼而有之。拟议的研究使用新的实验和分析现有的数据,试图找出这些影响的轨迹(采访者与受访者),并探索不同方法的有效性,以减少这些错误。该项目将有助于改进从受这些问题影响的调查项目中得出的各种国家统计数字。该项目还将进一步培训研究生,并为两个机构的调查研究人员的专业培训作出贡献。作为支持调查和统计方法研究的联合活动的一部分,该研究得到了方法、测量和统计计划和联邦统计机构联盟的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frauke Kreuter其他文献

The Science of Data Collection: Insights from Surveys can Improve Machine Learning Models
数据收集的科学:调查的见解可以改进机器学习模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephanie Eckman;Barbara Plank;Frauke Kreuter
  • 通讯作者:
    Frauke Kreuter
Order Effects in Annotation Tasks: Further Evidence of Annotation Sensitivity
注释任务中的顺序效应:注释敏感性的进一步证据
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Beck;Stephanie Eckman;Bolei Ma;Rob Chew;Frauke Kreuter
  • 通讯作者:
    Frauke Kreuter
California Center for Population Research On-line Working Paper Series Neighborhood Choice and Neighborhood Change Neighborhood Choice and Neighborhood Change Neighborhood Choice and Neighborhood Change
加州人口研究中心在线工作论文系列 邻里选择和邻里变化 邻里选择和邻里变化 邻里选择和邻里变化
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Bruch;R. Mare;John Miller;Scott Page;Frauke Kreuter;M. Handcock;Martina Morris;A. Pebley;Christine Schwartz;Judith Seltzer
  • 通讯作者:
    Judith Seltzer
ToPro: Token-Level Prompt Decomposition for Cross-Lingual Sequence Labeling Tasks
ToPro:跨语言序列标记任务的标记级提示分解
Measuring public opinion towards artificial intelligence: development and validation of a general AI attitude short scale
  • DOI:
    10.1007/s00146-025-02478-5
  • 发表时间:
    2025-07-31
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Marcus Novotny;Wiebke Weber;Christoph Kern;Frauke Kreuter
  • 通讯作者:
    Frauke Kreuter

Frauke Kreuter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frauke Kreuter', 18)}}的其他基金

NRT-IGE: Information Infrastructure for Society: Integrating Data Science and Social Science in Graduate Education and Workforce Development
NRT-IGE:社会信息基础设施:将数据科学和社会科学融入研究生教育和劳动力发展
  • 批准号:
    1633603
  • 财政年份:
    2016
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Decomposing Interviewer Variance in Standardized and Conversational Interviewing
合作研究:分解标准化和对话式访谈中访谈者的差异
  • 批准号:
    1323636
  • 财政年份:
    2013
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
Collaborative Research on Latent Class Models of Measurement Error
测量误差潜在类别模型的协作研究
  • 批准号:
    0550002
  • 财政年份:
    2006
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
  • 批准号:
    2152717
  • 财政年份:
    2022
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
  • 批准号:
    2152762
  • 财政年份:
    2022
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving the Interpretability of Tomographic Images Using Geologically Motivated Parametrizations
合作研究:利用地质驱动的参数化提高断层扫描图像的可解释性
  • 批准号:
    2011079
  • 财政年份:
    2020
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving the Interpretability of Tomographic Images Using Geologically Motivated Parametrizations
合作研究:利用地质驱动的参数化提高断层扫描图像的可解释性
  • 批准号:
    2011107
  • 财政年份:
    2020
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Incorporating Biologically-Motivated Circuit Motifs into Large-Scale Deep Neural Network Models of the Brain
RI:中:协作研究:将生物驱动的电路基序纳入大脑的大规模深度神经网络模型
  • 批准号:
    1704938
  • 财政年份:
    2017
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Incorporating Biological-Motivated Circuit Motifs into Large-Scale Deep Neural Network Models of the Brain
RI:中:协作研究:将生物驱动的电路基序纳入大脑的大规模深度神经网络模型
  • 批准号:
    1703161
  • 财政年份:
    2017
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
Collaborative Research: New statistically-motivated solutions to classical inverse problems
协作研究:经典反问题的新统计驱动解决方案
  • 批准号:
    1611791
  • 财政年份:
    2016
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
Collaborative Research: New statistically-motivated solutions to classical inverse problems
协作研究:经典反问题的新统计驱动解决方案
  • 批准号:
    1737929
  • 财政年份:
    2016
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
Collaborative Research: New stochastically-motivated solutions to classical inverse problems
合作研究:经典反问题的新随机驱动解决方案
  • 批准号:
    1612891
  • 财政年份:
    2016
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Motivated Underreporting
合作研究:动机性少报
  • 批准号:
    1232925
  • 财政年份:
    2011
  • 资助金额:
    $ 9.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了