Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation

协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证

基本信息

  • 批准号:
    2152717
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Sequential data observed from multiple agents is ubiquitous in artificial intelligence (AI) and scientific applications, for example, in computer vision, natural language processing, robotics, computational biology and biophysics, and knowledge graphs. Learning from sequentially observed data often provides a global understanding of the underlying system and yields more reliable predictions than learning from a non-sequentially (single-shot) observed data. Sequential data is often irregularly-sampled in time and space and when this is combined with the interaction between agents, it raises tremendous challenges for machine learning. This project addresses these challenges by developing new mathematical understandings of these bottlenecks combined with new mathematically-principled deep learning algorithms for sequential and graph learning. Anticipated results and algorithms from this project will have broad applicability to important societal issues, such as pandemic spread, cooperative robotics, and environmental change. The project includes research training opportunities for graduate students.This project bridges ordinary differential equations (ODEs) and partial differential equations (PDEs) theory with multi-agent sequential learning practice. The project further leverages ODE and PDE insights to advance theoretically-grounded algorithms for deep sequential and graph learning. This project synergistically integrates recent advances in neural ODE methods with recent advances in graph networks for machine learning. The project develops and explores building next-generation algorithms based on wave equations on graphs, coupling second-order continuous dynamics in time with graph filtering. The research includes theoretical guarantees for the new methods in overcoming the over-smoothing issue, to enable sequential learning on graphs with deep architectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从多个代理观察到的顺序数据在人工智能(AI)和科学应用中无处不在,例如,在计算机视觉、自然语言处理、机器人技术、计算生物学和生物物理学以及知识图中。从连续观测数据中学习通常提供对底层系统的全局理解,并且比从非连续(单次)观测数据中学习产生更可靠的预测。序列数据通常在时间和空间上不规则地采样,当这与代理之间的交互相结合时,它给机器学习带来了巨大的挑战。该项目通过开发对这些瓶颈的新的数学理解,结合用于顺序和图学习的新的基于数学原理的深度学习算法来解决这些挑战。该项目的预期结果和算法将广泛适用于重要的社会问题,如流行病传播,合作机器人和环境变化。该项目包括研究生的研究培训机会。该项目将常微分方程(ODE)和偏微分方程(PDE)理论与多智能体顺序学习实践联系起来。该项目进一步利用ODE和PDE见解来推进深度序列和图学习的理论基础算法。该项目将神经ODE方法的最新进展与用于机器学习的图网络的最新进展协同集成。该项目开发和探索基于图形上的波动方程构建下一代算法,将二阶连续动态与图形滤波耦合在一起。 该研究包括克服过度平滑问题的新方法的理论保证,以实现对具有深度架构的图的顺序学习。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Texture-based optical flow for wind velocity estimation from water vapor data
  • DOI:
    10.1117/12.2663008
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joel Barnett;A. Bertozzi;L. Vese;I. Yanovsky
  • 通讯作者:
    Joel Barnett;A. Bertozzi;L. Vese;I. Yanovsky
R ETHINKING THE B ENEFITS OF S TEERABLE F EATURES IN 3D E QUIVARIANT G RAPH N EURAL N ETWORKS
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shih-Hsin Wang;Yung-Chang Hsu;Justin Baker;Andrea Bertozzi;Jack Xin;Bao Wang
  • 通讯作者:
    Shih-Hsin Wang;Yung-Chang Hsu;Justin Baker;Andrea Bertozzi;Jack Xin;Bao Wang
Active Learning of non-Semantic Speech Tasks with Pretrained models
使用预训练模型主动学习非语义语音任务
  • DOI:
    10.1109/icassp49357.2023.10096465
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lee, Harlin;Saeed, Aaqib;Bertozzi, Andrea L.
  • 通讯作者:
    Bertozzi, Andrea L.
A Primal-Dual Framework for Transformers and Neural Networks
  • DOI:
  • 发表时间:
    2024-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Nguyen;Tam Nguyen;Nhat Ho;A. Bertozzi;Richard Baraniuk;S. Osher
  • 通讯作者:
    T. Nguyen;Tam Nguyen;Nhat Ho;A. Bertozzi;Richard Baraniuk;S. Osher
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Bertozzi其他文献

Incorporating Texture Features into Optical Flow for Atmospheric Wind Velocity Estimation
将纹理特征纳入光流中进行大气风速估计
Encased Cantilevers and Alternative Scan Algorithms for Ultra-Gantle High Speed Atomic Force Microscopy
  • DOI:
    10.1016/j.bpj.2011.11.3193
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Paul Ashby;Dominik Ziegler;Andreas Frank;Sindy Frank;Alex Chen;Travis Meyer;Rodrigo Farnham;Nen Huynh;Ivo Rangelow;Jen-Mei Chang;Andrea Bertozzi
  • 通讯作者:
    Andrea Bertozzi

Andrea Bertozzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Bertozzi', 18)}}的其他基金

Collaborative Research: RAPID: Rapid computational modeling of wildfires and management with emphasis on human activity
合作研究:RAPID:野火和管理的快速计算建模,重点关注人类活动
  • 批准号:
    2345256
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Active Learning Activity Detection in Multiplex Networks of Geospatial-Cyber-Temporal Data
ATD:地理空间网络时空数据多重网络中的主动学习活动检测
  • 批准号:
    2318817
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RAPID: Analysis of Multiscale Network Models for the Spread of COVID-19
RAPID:针对 COVID-19 传播的多尺度网络模型分析
  • 批准号:
    2027438
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Robust, Efficient, and Private Deep Learning Algorithms
FRG:协作研究:稳健、高效、私密的深度学习算法
  • 批准号:
    1952339
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Algorithms for Threat Detection in Knowledge Graphs
ATD:知识图中的威胁检测算法
  • 批准号:
    2027277
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NRT-HDR: Modeling and Understanding Human Behavior: Harnessing Data from Genes to Social Networks
NRT-HDR:建模和理解人类行为:利用从基因到社交网络的数据
  • 批准号:
    1829071
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: Sparsity Models for Forecasting Spatio-Temporal Human Dynamics
ATD:预测时空人类动力学的稀疏模型
  • 批准号:
    1737770
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Extreme-scale algorithms for geometric graphical data models in imaging, social and network science
成像、社会和网络科学中几何图形数据模型的超大规模算法
  • 批准号:
    1417674
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Modeling, Analysis, and Control of the Spatio-temporal Dynamics of Swarm Robotic Systems
协作研究:群体机器人系统时空动力学的建模、分析和控制
  • 批准号:
    1435709
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Particle laden flows - theory, analysis and experiment
颗粒负载流 - 理论、分析和实验
  • 批准号:
    1312543
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317192
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317194
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309779
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317193
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
  • 批准号:
    2309780
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
  • 批准号:
    2201149
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Explaining Differential Success in Biodiversity Knowledge Commons
合作研究:解释生物多样性知识共享的不同成功
  • 批准号:
    2122818
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Explaining Differential Success in Biodiversity Knowledge Commons
合作研究:解释生物多样性知识共享的不同成功
  • 批准号:
    2122819
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
  • 批准号:
    2152762
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了