Tailoring Hydrogen Storage Performance by Novel Mg-Catalyst Nano-Architectures

通过新型镁催化剂纳米结构定制储氢性能

基本信息

项目摘要

0853130ZhaoIntellectual Merits: Hydrogen storage is the bottleneck for using hydrogen energy in on-board vehicle applications. In the pursuit of metal hydrides as solid state hydrogen storage media, magnesium hydride is considered to be a good candidate because of its lightweight, low cost, and high theoretical hydrogen storage capacity of 7.6 wt.%. Unfortunately, its high thermodynamic stability and sluggish reaction kinetics limit its practical applications. By tailoring the structural properties of nanomaterials, the thermodynamics and kinetics of hydrogen adsorption can be designed to satisfy the future hydrogen storage requirements. A fundamental understanding of hydrogen-nanostructure interactions also depends largely on the ability to fabricate nanostructures with the desired structural properties. In this proposal, the main goal is to use a novel nanofabrication technique, glancing angle deposition (GLAD), to design and produce novel Mg-catalyst nano-architectures with different topography, structure, and composition. This fabrication technique provides one with a vehicle to investigate the following important questions for hydrogen storage applications: (1) How would different nanoscale structures change the hydrogen storage behavior? (2) Would nanoscale catalysts, incorporated into nanostructured hydrogen storage materials in different forms, greatly enhance the storage behavior? Using this nanofabrication technique, the PI proposes to fabricate metal hydride nanostructures with different topographic structures to investigate the hydrogen storage ability and sorption performance. The hydrogen sorption performances of the nanostructures will be further improved by depositing different catalysts with different sizes and geometric forms. Broader Impacts: The success of this project will generate the following benefits: (1) It provides a generic methodology to fabricate well-designed metal hydride nanostructures or multilayered nanostructures. Therefore, the metal hydride materials that can be tailored into nanostructures are not limited to the proposed materials. (2) With the systematically designed metal hydride nanostructures and advanced characterization techniques, one can study at a fundamental level how hydrogen interacts with well-defined metal hydride nanostructures. (3) Optimal structures and conditions for fabricating the best metal hydride nanostructures for highly efficient hydrogen storage could be found. The lab-based nanotechnology course module that the PI will create will allow undergraduate and high school students to obtain provide hands-on experience on nanofabrication.
0853130 Zhao智力优势:氢存储是车载应用中使用氢能的瓶颈。在金属氢化物作为固态储氢介质的研究中,氢化镁被认为是一个很好的候选者,因为它重量轻,成本低,理论储氢容量高(7.6wt.%)。然而,它的高热力学稳定性和缓慢的反应动力学限制了它的实际应用。通过调整纳米材料的结构特性,可以设计氢吸附的热力学和动力学,以满足未来的储氢需求。对氢-纳米结构相互作用的基本理解也在很大程度上取决于制造具有所需结构特性的纳米结构的能力。在这项提案中,主要目标是使用一种新的纳米纤维技术,掠射角沉积(GLAD),设计和生产新的镁催化剂纳米结构与不同的地形,结构和组成。这种制备技术提供了一种研究储氢应用中以下重要问题的工具:(1)不同的纳米结构如何改变储氢行为?(2)将纳米催化剂以不同形式掺入纳米结构储氢材料中,是否会大大提高储氢性能?利用这种纳米纤维技术,PI提出制造具有不同形貌结构的金属氢化物纳米结构,以研究储氢能力和吸附性能。通过沉积不同尺寸和几何形状的催化剂,纳米结构的吸氢性能将进一步提高。更广泛的影响:该项目的成功将产生以下好处:(1)它提供了一种通用的方法来制备设计良好的金属氢化物纳米结构或多层纳米结构。因此,可以定制成纳米结构的金属氢化物材料不限于所提出的材料。(2)通过系统设计的金属氢化物纳米结构和先进的表征技术,人们可以在基础水平上研究氢如何与定义明确的金属氢化物纳米结构相互作用。(3)可以找到最佳的结构和条件,以制造最好的金属氢化物纳米结构,用于高效储氢。PI将创建基于实验室的纳米技术课程模块,将允许本科生和高中生获得纳米材料的实践经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiping Zhao其他文献

Large‐Area Nanoscale Patterning of Functional Materials by Nanomolding in Capillaries
通过毛细管纳米成型实现功能材料的大面积纳米级图案化
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Duan;Yiping Zhao;E. Berenschot;N. Tas;D. Reinhoudt;J. Huskens
  • 通讯作者:
    J. Huskens
The differential expression of microRNA-143,145 in endometriosis
microRNA-143,145在子宫内膜异位症中的差异表达
Surface-enhanced Raman scattering characterization of Ag nanorod arrays fabricated by oblique angle deposition
斜角沉积银纳米棒阵列的表面增强拉曼散射表征
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongjun Liu;Yiping Zhao
  • 通讯作者:
    Yiping Zhao
How does a multiwalled carbon nanotube atomic force microscopy probe affect the determination of surface roughness statistics
多壁碳纳米管原子力显微镜探针如何影响表面粗糙度统计的测定
  • DOI:
    10.1016/s0039-6028(02)01955-6
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Q. Hudspeth;K. Nagle;Yiping Zhao;T. Karabacak;C. Nguyen;M. Meyyappan;Gwo;T. Lu
  • 通讯作者:
    T. Lu
Reconfiguring ferromagnetic microrod chains by alternating two orthogonal magnetic fields
通过交替两个正交磁场重构铁磁微棒链

Yiping Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiping Zhao', 18)}}的其他基金

Collaborative Research: Precise and Dexterous Single-Particle Manipulation Using Non-uniform AC Magnetic Fields
合作研究:利用非均匀交流磁场进行精确灵巧的单粒子操纵
  • 批准号:
    1808271
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Electric-field Directed Assembly of 3D Chiral Metamaterials
合作研究:3D 手性超材料的电场定向组装
  • 批准号:
    1609815
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Template-based Fabrication of Three-Dimensional Optical Metamaterials
基于模板的三维光学超材料制造
  • 批准号:
    1435309
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Kinetics of Autonomous Catalytic Nanomotors in Confined and Crowded Environments
合作研究:密闭和拥挤环境中自主催化纳米电机的动力学
  • 批准号:
    1303134
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SERS Based Micro-Sensor Arrays for Quantitative miRNAs Detection
基于 SERS 的微传感器阵列用于定量 miRNA 检测
  • 批准号:
    1064228
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Rationally Designed Three-Dimensional Nanostructures for Surface Enhanced Raman Spectroscopy
合理设计的表面增强拉曼光谱三维纳米结构
  • 批准号:
    1029609
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Understanding and Preventing Nanocarpet Effect
了解和预防纳米地毯效应
  • 批准号:
    0824728
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Integration of Aligned Nanorod Array Structures into Fiber Raman Probes
将对齐的纳米棒阵列结构集成到光纤拉曼探针中
  • 批准号:
    0701787
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Designing Catalytic Nanomotors
设计催化纳米电机
  • 批准号:
    0726770
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NER: Fabricating Heterogeneous Nanorods by Physical Vapor Deposition
NER:通过物理气相沉积制造异质纳米棒
  • 批准号:
    0404066
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

High-Efficiency, Modular and Low-Cost Hydrogen Liquefaction and Storage
高效、模块化、低成本的氢气液化和储存
  • 批准号:
    DE240100863
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Near-room Temperature Solid-state Hydrogen Storage
近室温固态储氢
  • 批准号:
    EP/Y007778/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAS-Climate: Bubble generation and ripening in underground hydrogen storage
CAS-气候:地下储氢中气泡的产生和成熟
  • 批准号:
    2348723
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Enabling Novel Hydrogen Storage via Combustible Ice for a Low-Carbon Future
通过可燃冰实现新型储氢,实现低碳未来
  • 批准号:
    DE240100722
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Hybrid Toughening of Carbon Fibre Composites for Liquid Hydrogen Storage
用于液氢储存的碳纤维复合材料的混合增韧
  • 批准号:
    DP230101204
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Zero-Emission: the Next-generation of Integrated Technology for Hydrogen storage (ZENITH)
零排放:下一代储氢集成技术(ZENITH)
  • 批准号:
    EP/X025403/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Electron Irradiation of Graphene in Air at Atmospheric Pressure: a Method for Hydrogenating Graphene for Hydrogen Storage Applications
大气压下空气中石墨烯的电子辐照:一种用于储氢应用的石墨烯氢化方法
  • 批准号:
    2312436
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SBIR Phase II: High Energy-Density Hydrogen-Halogen Flow Batteries for Energy Storage
SBIR第二阶段:用于储能的高能量密度氢卤液流电池
  • 批准号:
    2136304
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了