FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology
FRG:协作研究:平均曲率流作为低维拓扑的工具
基本信息
- 批准号:0853501
- 负责人:
- 金额:$ 31.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal will address several fundamental open questions about mean curvature flow (MCF) of hypersurfaces of low dimensional manifolds and will introduce the MCF as a tool to address central questions in 3-manifold topology. In particular, the PI's will study regularity problems for the mean curvature flow, investigate the geometry and topology of ultra large volume 3-manifolds and use these results to attack the virtual Haken conjecture. Mean curvature flow as well as other curvature flows have been developed for their intrinsic beauty as well as their own intrinsic interest and their potential applications to other scientific fields, like mathematical finance and material science to model, for instance, option pricing, motion of grains in annealing metals, and crystal growths. Under the mean curvature flow, surfaces move in the direction where the surface area decreases the most, thus minimal surfaces remain static under the MCF. While key foundational results have been obtained, several of the most basic questions remain unanswered.
本文将解决关于低维流形超曲面的平均曲率流(MCF)的几个基本开放问题,并将MCF作为解决3维流形拓扑中的核心问题的工具。特别是,PI将研究平均曲率流的正则性问题,研究超大体积3-流形的几何和拓扑结构,并利用这些结果来攻击虚拟哈肯猜想。平均曲率流和其他曲率流因其内在的美以及其自身的内在利益和它们在其他科学领域的潜在应用而发展起来,如数学金融和材料科学模型,例如期权定价,退火金属中的晶粒运动和晶体生长。在平均曲率流下,表面沿表面积减小最大的方向移动,因此最小表面在MCF下保持静止。虽然已经获得了关键的基础结果,但几个最基本的问题仍未得到解答。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Minicozzi其他文献
William Minicozzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Minicozzi', 18)}}的其他基金
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
- 批准号:
2304684 - 财政年份:2023
- 资助金额:
$ 31.59万 - 项目类别:
Standard Grant
Dynamics and Singularities of Geometric Flows
几何流的动力学和奇点
- 批准号:
2005345 - 财政年份:2020
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant
Mean Curvature Flow and Nonlinear Heat Equations
平均曲率流和非线性热方程
- 批准号:
1707270 - 财政年份:2017
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant
Mean curvature flow and geometric analysis
平均曲率流和几何分析
- 批准号:
1408398 - 财政年份:2013
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant
Mean curvature flow and geometric analysis
平均曲率流和几何分析
- 批准号:
1206827 - 财政年份:2012
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant
Minimal surfaces and geometric flows
最小表面和几何流
- 批准号:
0906233 - 财政年份:2009
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant
Geometric Analysis and Nonlinear Elliptic PDE's
几何分析和非线性椭圆偏微分方程
- 批准号:
0623843 - 财政年份:2006
- 资助金额:
$ 31.59万 - 项目类别:
Standard Grant
Minimal surfaces and geometric analysis
最小曲面和几何分析
- 批准号:
0405695 - 财政年份:2004
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant
Embedded Minimal Surfaces in Three Manifolds
三个流形中的嵌入式最小曲面
- 批准号:
0104187 - 财政年份:2001
- 资助金额:
$ 31.59万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 31.59万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 31.59万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 31.59万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 31.59万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant














{{item.name}}会员




