Mean curvature flow and geometric analysis

平均曲率流和几何分析

基本信息

  • 批准号:
    1206827
  • 负责人:
  • 金额:
    $ 72.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

The PI proposes, jointly with Toby Colding, to continue their investigations on mean curvature flow and related areas of geometric analysis, including projects on the uniqueness of tangent cones for Einstein manifolds. The first broad area of the proposal centers on the study of singularities in MCF, including estimates for the size of the singular sets, a compactness theorem for the possible types of singularities, a classification of generic singularities of the flow, and a canonical neighborhoods theorem that describes the flow in a neighborhood of the generic singularities. These are the most important questions about singularities and the PI and his collaborator have already obtained significant results in this direction. The second main area of the proposal concerns the structure of Einstein manifolds and, in particular, the question of when an Einstein manifold has a unique asymptotic structure (or tangent cone at infinity). The main prior result in this direction is due to Cheeger and Tian in 1994, where they showed uniqueness under an integrability assumption that the PI would like to remove. These sort of uniqueness questions have played an important role in a number of areas of geometric analysis and are extremely important in understanding the structure of the singular set for limits of Einstein manifolds.This project focuses on several geometric variational problems. The problems are mathematical, but many of them arose first in science and engineering. Perhaps the most natural geometrically are minimal surfaces that locally minimize their surface area and, thus, model soap films in perfect equilibrium (so the film does not change other time). These have been studied at least since Lagrange's 1762 memoir, but recent years have seen breakthroughs on many long-standing problems in the theory of minimal surfaces, with important contributions from many mathematicians. There is a time-varying analog of this where a surface (which is not in equilibrium) evolves to minimize its surface area as quickly as possible; this is called mean curvature flow or MCF. Mathematically, this leads to a nonlinear partial differential equation which is formally similar to the equation that governs the flow of heat in physics. Clearly, minimal surfaces remain static under the MCF. MCF and other geometric flows were developed for their intrinsic beauty as well as their potential applications to other fields to model, for instance, option pricing, motion of grains in annealing metals, and crystal growth. While key foundational results have been obtained, several of the most basic questions remain unanswered. In contrast, the Einstein equation is a nonlinear differential equation for the curvature of a space (or a space-time in general relativity). Hilbert realized a century ago that this comes up variationally as the Euler-Lagrange equation for the Einstein-Hilbert functional.
PI提议与Toby Colding一起继续他们对平均曲率流和相关几何分析领域的研究,包括爱因斯坦流形切锥的唯一性项目。该提案的第一个广泛领域集中在对MCF中的奇点的研究上,包括奇异集大小的估计,奇点可能类型的紧性定理,流的一般奇点的分类,以及描述在一般奇点的邻域中的流的规范邻域定理。这些是关于奇点的最重要的问题,PI和他的合作者已经在这个方向上取得了重要的成果。该建议的第二个主要领域涉及爱因斯坦流形的结构,特别是爱因斯坦流形何时具有唯一渐近结构(或无穷远处的切锥)的问题。在这个方向上的主要先验结果是由Cheeger和Tian在1994年提出的,他们在PI想要去除的可积性假设下证明了唯一性。这类唯一性问题在几何分析的许多领域中都扮演着重要的角色,对于理解爱因斯坦流形极限的奇异集的结构也非常重要。这个项目的重点是几个几何变分问题。这些问题都是数学上的,但其中许多问题首先出现在科学和工程领域。也许最自然的几何形状是最小的表面,局部面积最小,因此,模型肥皂膜处于完美的平衡状态(所以膜在其他时间不会改变)。至少从拉格朗日1762年的回忆录开始,人们就开始研究这些问题,但近年来,在许多数学家的重要贡献下,极小曲面理论中许多长期存在的问题取得了突破。这有一个时变的模拟,即一个表面(不处于平衡状态)演变成尽可能快地最小化其表面积;这被称为平均曲率流或MCF。从数学上讲,这导致了一个非线性偏微分方程,它在形式上类似于物理学中控制热量流动的方程。显然,最小的表面在MCF下保持静态。MCF和其他几何流因其内在之美以及它们在其他领域的潜在应用而发展起来,例如期权定价、退火金属中的晶粒运动和晶体生长。虽然已经获得了关键的基础结果,但几个最基本的问题仍未得到解答。相反,爱因斯坦方程是空间(或广义相对论中的时空)曲率的非线性微分方程。希尔伯特在一个世纪前就意识到这是爱因斯坦-希尔伯特泛函的变分欧拉-拉格朗日方程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Minicozzi其他文献

William Minicozzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Minicozzi', 18)}}的其他基金

Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
  • 批准号:
    2304684
  • 财政年份:
    2023
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Standard Grant
Dynamics and Singularities of Geometric Flows
几何流的动力学和奇点
  • 批准号:
    2005345
  • 财政年份:
    2020
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Continuing Grant
Mean Curvature Flow and Nonlinear Heat Equations
平均曲率流和非线性热方程
  • 批准号:
    1707270
  • 财政年份:
    2017
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Continuing Grant
Mean curvature flow and geometric analysis
平均曲率流和几何分析
  • 批准号:
    1408398
  • 财政年份:
    2013
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Continuing Grant
Minimal surfaces and geometric flows
最小表面和几何流
  • 批准号:
    0906233
  • 财政年份:
    2009
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Mean curvature flow as a tool in low dimensional topology
FRG:协作研究:平均曲率流作为低维拓扑的工具
  • 批准号:
    0853501
  • 财政年份:
    2009
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Standard Grant
Geometric Analysis and Nonlinear Elliptic PDE's
几何分析和非线性椭圆偏微分方程
  • 批准号:
    0623843
  • 财政年份:
    2006
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Standard Grant
Minimal surfaces and geometric analysis
最小曲面和几何分析
  • 批准号:
    0405695
  • 财政年份:
    2004
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Continuing Grant
Embedded Minimal Surfaces in Three Manifolds
三个流形中的嵌入式最小曲面
  • 批准号:
    0104187
  • 财政年份:
    2001
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Standard Grant
Function Theory and Minimal Surfaces
函数论和最小曲面
  • 批准号:
    9803144
  • 财政年份:
    1998
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Standard Grant

相似国自然基金

离散分析-分形和图上的分析及其应用
  • 批准号:
    11271011
  • 批准年份:
    2012
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
共形几何与液晶问题中的偏微分方程
  • 批准号:
    11201223
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
  • 批准号:
    23H00085
  • 财政年份:
    2023
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
  • 批准号:
    23K03212
  • 财政年份:
    2023
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
  • 批准号:
    23K12992
  • 财政年份:
    2023
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
  • 批准号:
    2306233
  • 财政年份:
    2023
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Continuing Grant
Mean curvature flow of small sections of the tangent bundle
切束小截面的平均曲率流
  • 批准号:
    572922-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 72.66万
  • 项目类别:
    University Undergraduate Student Research Awards
Research of submanifolds by using the mean curvature flow and Lie group actions, and its application to theoretical physics
利用平均曲率流和李群作用研究子流形及其在理论物理中的应用
  • 批准号:
    22K03300
  • 财政年份:
    2022
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mean Curvature Flow and Singular Minimal Surfaces
平均曲率流和奇异极小曲面
  • 批准号:
    2203132
  • 财政年份:
    2022
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Standard Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
  • 批准号:
    2203218
  • 财政年份:
    2022
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
  • 批准号:
    2105576
  • 财政年份:
    2021
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
  • 批准号:
    2146997
  • 财政年份:
    2021
  • 资助金额:
    $ 72.66万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了