FRG: Collaborative Research: Models of Balanced Multiscale Ocean Physics for Simulation and Parameterization
FRG:协作研究:用于模拟和参数化的平衡多尺度海洋物理模型
基本信息
- 批准号:0855010
- 负责人:
- 金额:$ 80.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The vast range of scales occurring in the Earth's climate system cannot be explicitly captured in global climate models, even on emerging petascale computers. This project will further understanding of the effects of physics at a scale that is too small to be resolved by models on the larger climate system by: 1) exploring potentially novel asymptotic expansions that provide reduced single-scale equations for each of the three important small-scale processes: convection, mesoscale eddies, and submesoscale eddies; 2) extending the asymptotic expansion technique to explicitly derive the coupling between small-scale regimes and large-scale flows; 3) developing state-of-the-art high-performance parallel codes to simulate the reduced single-scale and multiscale equations; 4) performing high-resolution simulations on high-performance computers; 5) analyzing the simulations to extend understanding of the behavior of each small-scale process, including flow dynamics, energetics, and transport properties; and 6) testing a range of existing parameterizations and superparameterizations of unresolved physics using eddy-resolving models to understand the scope and impact of our multiscale approach. The development of coupled asymptotic expansions to study multiscale phenomena has potential applications across many fields of science and engineering, in addition to the geosciences. This research is intended to demonstrate and apply the advantages of this approach to improve mathematical and computational study of the climate system. In geosciences, the asymptotic mathematical approach has long been used to improve computation--the first numerical weather forecasts were only possible because of the quasigeostrophic asymptotic expansion. The geosciences have long led asymptotic analysis as well; among the earliest examples of matched asymptotic expansions are studies of oceanic western boundary currents, such as the Gulf Stream and Kuroshio. Finally, the research is intended to directly improve climate models' representation of small-scale physics, which will aid our goals in improved forecasting and understanding of climate and mankind's influence on it.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。地球气候系统中发生的大范围尺度无法在全球气候模型中明确捕捉,即使是在新兴的千万亿次计算机上也是如此。这个项目将通过以下方式进一步理解物理学在尺度太小而无法用模式对较大气候系统进行分析的情况下的影响:1)探索潜在的新的渐近展开,为三个重要的小尺度过程中的每一个提供简化的单尺度方程:对流、中尺度涡旋和亚中尺度涡旋; 2)扩展渐近展开技术,使其能够显式地导出小尺度流态和大尺度流态之间的耦合关系,3)发展最先进的高性能并行程序,模拟简化的单尺度和多尺度方程; 4)在高性能计算机上进行高分辨率模拟; 5)分析模拟以扩展对每个小尺度过程行为的理解,包括流动动力学,能量学和输运性质;以及6)使用涡流解析模型测试一系列现有的参数化和未解决物理学的超参数化,以了解我们的多尺度方法的范围和影响。发展耦合渐近展开来研究多尺度现象,除了地球科学之外,在许多科学和工程领域都有潜在的应用。本研究旨在展示和应用这种方法的优势,以提高气候系统的数学和计算研究。 在地球科学中,渐近数学方法长期以来一直用于改进计算-第一个数值天气预报是唯一可能的,因为准地转渐近展开。地球科学长期以来也引导了渐近分析;匹配渐近展开的最早例子是对海洋西边界流的研究,如墨西哥湾流和黑潮。最后,这项研究旨在直接改善气候模型对小尺度物理学的表现,这将有助于我们实现改善气候预测和理解以及人类对气候影响的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keith Julien其他文献
From a vortex gas to a vortex crystal in instability-driven two-dimensional turbulence
不稳定驱动的二维湍流中从涡旋气体到涡旋晶体
- DOI:
10.1017/jfm.2024.162 - 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
Adrian van Kan;B. Favier;Keith Julien;Edgar Knobloch - 通讯作者:
Edgar Knobloch
Low-frequency Internal Gravity Waves Are Pseudo-incompressible
低频内重力波是伪不可压缩的
- DOI:
10.3847/1538-4357/ad0967 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
B. Hindman;Keith Julien - 通讯作者:
Keith Julien
Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation
- DOI:
10.1016/j.jcp.2011.02.007 - 发表时间:
2011-05-01 - 期刊:
- 影响因子:
- 作者:
Ian Grooms;Keith Julien - 通讯作者:
Keith Julien
The solar dynamo begins near the surface
太阳能发电机从地表附近开始
- DOI:
10.1038/s41586-024-07315-1 - 发表时间:
2024 - 期刊:
- 影响因子:64.8
- 作者:
G. Vasil;D. Lecoanet;K. Augustson;K. Burns;J. Oishi;Benjamin P. Brown;N. Brummell;Keith Julien - 通讯作者:
Keith Julien
A new method for fast transforms in parity-mixed PDEs: Part I. Numerical techniques and analysis
- DOI:
10.1016/j.jcp.2008.04.020 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:
- 作者:
Geoffrey M. Vasil;Nicholas H. Brummell;Keith Julien - 通讯作者:
Keith Julien
Keith Julien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keith Julien', 18)}}的其他基金
Collaborative Research: Self-organization and transitions in anisotropic turbulence
合作研究:各向异性湍流的自组织和转变
- 批准号:
2308338 - 财政年份:2023
- 资助金额:
$ 80.54万 - 项目类别:
Standard Grant
Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
- 批准号:
2023499 - 财政年份:2020
- 资助金额:
$ 80.54万 - 项目类别:
Standard Grant
Collaborative Research: Inverse Cascade Pathways in Turbulent Convection - The Impact of Spatial Anisotropy
合作研究:湍流对流中的逆级联路径 - 空间各向异性的影响
- 批准号:
2009319 - 财政年份:2020
- 资助金额:
$ 80.54万 - 项目类别:
Standard Grant
Collaborative Research: Formation, properties and evolution of protoplanetary vortices: Multiscale investigations of baroclinic instability
合作研究:原行星涡旋的形成、性质和演化:斜压不稳定性的多尺度研究
- 批准号:
1317666 - 财政年份:2013
- 资助金额:
$ 80.54万 - 项目类别:
Standard Grant
Next-Generation Modeling of the Geodynamo: Development of the First Multi-Scale Dynamo Model
下一代地球发电机建模:第一个多尺度发电机模型的开发
- 批准号:
1320991 - 财政年份:2013
- 资助金额:
$ 80.54万 - 项目类别:
Standard Grant
CSEDI Collaborative Research: Next Generation Modeling of Core Turbulence via Combined Laboratory, Numerical and Theoretical Models
CSEDI 协作研究:通过实验室、数值和理论组合模型对核心湍流进行下一代建模
- 批准号:
1067944 - 财政年份:2011
- 资助金额:
$ 80.54万 - 项目类别:
Continuing Grant
CMG TRAINING: Summer School on Geophysical Turbulent Phenomena
CMG 培训:地球物理湍流现象暑期学校
- 批准号:
0724859 - 财政年份:2007
- 资助金额:
$ 80.54万 - 项目类别:
Standard Grant
Collaborative Research: Rotationally Constrained Convection
合作研究:旋转约束对流
- 批准号:
0137347 - 财政年份:2002
- 资助金额:
$ 80.54万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 80.54万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 80.54万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 80.54万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 80.54万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 80.54万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 80.54万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 80.54万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 80.54万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 80.54万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 80.54万 - 项目类别:
Continuing Grant














{{item.name}}会员




