Collaborative Research: Self-organization and transitions in anisotropic turbulence

合作研究:各向异性湍流的自组织和转变

基本信息

  • 批准号:
    2308338
  • 负责人:
  • 金额:
    $ 18.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The impact of rotation and thermal driving on stellar and planetary bodies is clearly visible in far-field optical observations. Such observations reveal the presence of differentially rotating fluid atmospheres with embedded features in the form of large-scale eddies and jets that greatly influence the climate on the celestial body. On Earth the impact of the high latitude jet stream on weather and the destructive impact of hurricanes due to climate change is evident. Within the Jovian atmosphere, the recent discovery by the Juno mission of polar vortices illuminates the longevity of vortical structures. Theory, experimentation, and numerical simulations strongly suggest that the generation of large-scale jets and vortices is common in fluid turbulence within thin layers like the Earth’s atmosphere and on rapidly rotating celestial bodies such as Jupiter. Focusing on these paradigms, this project is dedicated to elucidating the basic mechanism behind the formation of such large-scale structures from small-scale turbulent fluctuations and its disruption via the generation of isolated, weakly-interacting, mesoscale shielded vortices, and to extending this understanding to more realistic models that introduce higher level physics such as the effects of water vapor and internal heating via latent heat release. This understanding will inform more detailed studies such as those based on realistic Global Ocean and Atmospheric Circulation Models and offers hope for understanding the conditions favoring the formation of both large-scale structures and of the smaller-scale shielded vortices. The modeling strategy taken provides a foundation upon which greater discipline-specific complexity can be built. The project will support and train one graduate student and one postdoctoral researcher in the physical understanding of energy transfer between scales in systems of geophysical relevance, asymptotic and other modeling techniques, as well as direct numerical simulations of rapidly rotating fluid layers, appropriate for planetary-scale phenomena on and within the Earth.The aim of this project is to classify different regimes of instability-driven turbulence in two dimensions (2D) as a function of the energy input and dissipation parameters, and to explore how these states evolve when three-dimensional (3D) fluctuations become increasingly important as the height of the turbulent layer increases. Particular emphasis will be placed on the recently discovered regime of shielded mesoscale vortices whose generation may disrupt the inverse energy cascade familiar from 2D turbulence with random stirring. Properties of the resulting chiral mesoscale vortex gas will be studied as a function of the layer height, as will the transition to a vortex crystal that takes place at high vortex density in 2D. The Reynolds number will be varied systematically to bridge the gap between these phenomena and related states in bacterial suspensions at low Reynolds numbers. The possibility of an analogous state in rapidly rotating 3D turbulence will be investigated in detail using a new reformulation of the Navier-Stokes fluid equations, extending direct numerical simulations to smaller Rossby numbers, together with a theoretical analysis dissecting the amplitude-phase relationships between large-scale structures and small-scale turbulence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在远场光学观测中,旋转和热驱动对恒星和行星体的影响是清晰可见的。这样的观测揭示了存在差异旋转的流体大气,其嵌入的特征是大范围涡流和喷流,这些特征极大地影响了天体上的气候。在地球上,高纬度急流对天气的影响以及由于气候变化造成的飓风的破坏性影响是显而易见的。在木星大气中,朱诺任务最近发现的极地涡旋说明了涡旋结构的长寿。理论、实验和数值模拟有力地表明,在地球大气层等薄层内的流体湍流中,以及在快速旋转的天体(如木星)上,大规模射流和涡流的产生是常见的。围绕这些范例,这个项目致力于阐明小尺度湍流涨落形成这种大尺度结构的基本机制,以及它通过产生孤立的、弱相互作用的中尺度屏蔽涡而破坏的基本机制,并将这一理解扩展到更现实的模式,这些模式引入了更高层次的物理,如水蒸气和通过潜热释放的内部加热的影响。这一理解将有助于开展更详细的研究,如基于现实的全球海洋和大气环流模型的研究,并为理解有利于形成大尺度结构和小尺度屏蔽涡的条件提供了希望。所采用的建模策略提供了一个基础,在此基础上可以构建更大的特定于规程的复杂性。该项目将支持和培训一名研究生和一名博士后研究人员,了解与地球物理相关的系统中尺度之间的能量转移的物理理解,渐近和其他建模技术,以及适用于地球上和地球内部的行星尺度现象的快速旋转流体层的直接数值模拟。该项目的目的是将不稳定驱动的湍流在二维(2D)中作为能量输入和耗散参数的函数进行分类,并探索当三维(3D)涨落随着湍流层高度的增加变得越来越重要时,这些状态是如何演变的。重点将放在最近发现的屏蔽中尺度涡旋区域,它们的产生可能会扰乱与随机搅动的2D湍流相似的逆能量级联。所产生的手性中尺度涡旋气体的性质将作为层高度的函数来研究,以及在2D中高涡旋密度下发生的向涡旋晶体的转变。雷诺数将系统地变化,以弥合这些现象与低雷诺数细菌悬浮液中相关状态之间的差距。在快速旋转的3D湍流中,类似状态的可能性将通过一种新的重新表述的Navier-Stokes流体方程进行详细研究,将直接数值模拟扩展到较小的Rossby数,并结合理论分析剖析大尺度结构和小尺度湍流之间的幅相关系。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为是值得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keith Julien其他文献

From a vortex gas to a vortex crystal in instability-driven two-dimensional turbulence
不稳定驱动的二维湍流中从涡旋气体到涡旋晶体
  • DOI:
    10.1017/jfm.2024.162
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Adrian van Kan;B. Favier;Keith Julien;Edgar Knobloch
  • 通讯作者:
    Edgar Knobloch
Low-frequency Internal Gravity Waves Are Pseudo-incompressible
低频内重力波是伪不可压缩的
  • DOI:
    10.3847/1538-4357/ad0967
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Hindman;Keith Julien
  • 通讯作者:
    Keith Julien
Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation
  • DOI:
    10.1016/j.jcp.2011.02.007
  • 发表时间:
    2011-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ian Grooms;Keith Julien
  • 通讯作者:
    Keith Julien
The solar dynamo begins near the surface
太阳能发电机从地表附近开始
  • DOI:
    10.1038/s41586-024-07315-1
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    G. Vasil;D. Lecoanet;K. Augustson;K. Burns;J. Oishi;Benjamin P. Brown;N. Brummell;Keith Julien
  • 通讯作者:
    Keith Julien
A new method for fast transforms in parity-mixed PDEs: Part I. Numerical techniques and analysis
  • DOI:
    10.1016/j.jcp.2008.04.020
  • 发表时间:
    2008-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Geoffrey M. Vasil;Nicholas H. Brummell;Keith Julien
  • 通讯作者:
    Keith Julien

Keith Julien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keith Julien', 18)}}的其他基金

Collaborative Research: Explorations of Salt Finger Convection in the Extreme Oceanic Parameter Regime: An Asymptotic Modeling Approach.
合作研究:极端海洋参数体系中盐指对流的探索:渐近建模方法。
  • 批准号:
    2023499
  • 财政年份:
    2020
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Inverse Cascade Pathways in Turbulent Convection - The Impact of Spatial Anisotropy
合作研究:湍流对流中的逆级联路径 - 空间各向异性的影响
  • 批准号:
    2009319
  • 财政年份:
    2020
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Formation, properties and evolution of protoplanetary vortices: Multiscale investigations of baroclinic instability
合作研究:原行星涡旋的形成、性质和演化:斜压不稳定性的多尺度研究
  • 批准号:
    1317666
  • 财政年份:
    2013
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Next-Generation Modeling of the Geodynamo: Development of the First Multi-Scale Dynamo Model
下一代地球发电机建模:第一个多尺度发电机模型的开发
  • 批准号:
    1320991
  • 财政年份:
    2013
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Next Generation Modeling of Core Turbulence via Combined Laboratory, Numerical and Theoretical Models
CSEDI 协作研究:通过实验室、数值和理论组合模型对核心湍流进行下一代建模
  • 批准号:
    1067944
  • 财政年份:
    2011
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Models of Balanced Multiscale Ocean Physics for Simulation and Parameterization
FRG:协作研究:用于模拟和参数化的平衡多尺度海洋物理模型
  • 批准号:
    0855010
  • 财政年份:
    2009
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
CMG TRAINING: Summer School on Geophysical Turbulent Phenomena
CMG 培训:地球物理湍流现象暑期学校
  • 批准号:
    0724859
  • 财政年份:
    2007
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Rotationally Constrained Convection
合作研究:旋转约束对流
  • 批准号:
    0137347
  • 财政年份:
    2002
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
  • 批准号:
    2231077
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
  • 批准号:
    2409880
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
  • 批准号:
    2305882
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
  • 批准号:
    2329674
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
  • 批准号:
    2329675
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
  • 批准号:
    2247880
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: DESC: Type I: A User-Interactive Approach to Water Management for Sustainable Data Centers: From Water Efficiency to Self-Sufficiency
合作研究:DESC:类型 I:可持续数据中心水资源管理的用户交互方法:从用水效率到自给自足
  • 批准号:
    2324916
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了