Quantum Electrodynamics in Fundamental Physics and Applications

基础物理及应用中的量子电动力学

基本信息

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Quantum electrodynamics is the most accurately tested theory in physics, and it is a cornerstone of our current understanding of nature. The most accurately known fundamental constants are determined using the theory, and theoretical calculations in this field require some of the most advanced computational methods devised so far in theoretical physics. It is planned to illuminate the nature of various higher-order correction terms that represent obstacles to a further understanding of fundamental constants, notably, the Rydberg constant. Also, the description of long-range (non-contact) interactions of atoms requires a sophisticated formalism. These interactions actually proceed via so-called virtual excitations of quantum fields. Various related interactions, including the loss of energy due to non-contact friction, have not been sufficiently understood in the microscopic world and yet are important, e.g., for the design of nanostructured devices (nanotechnology).The broader impact of the work will include potential new fundamental calculable standards of time, based on calculable atomic transitions, which are necessary for a variety of industrial applications and also enable scientists to find relations among various fundamental constants. Another impact is on numerical algorithms for so-called special functions describing physical and technical processes, and for the diagonalization of matrices where industrial applications can also be envisaged. The education of a graduate student forms an integral part of the research endeavour.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。量子电动力学是物理学中最精确测试的理论,它是我们目前对自然理解的基石。最精确的已知基本常数是使用该理论确定的,该领域的理论计算需要一些迄今为止在理论物理学中设计的最先进的计算方法。计划阐明各种高阶校正项的性质,这些项代表了进一步理解基本常数的障碍,特别是里德伯常数。此外,原子的长程(非接触)相互作用的描述需要复杂的形式主义。这些相互作用实际上通过所谓的量子场的虚激发进行。各种相关的相互作用,包括由于非接触摩擦引起的能量损失,在微观世界中尚未得到充分理解,但仍然很重要,例如,这项工作的更广泛影响将包括基于可计算的原子跃迁的潜在的新的基本可计算时间标准,这对各种工业应用是必要的,也使科学家能够找到各种基本常数之间的关系。另一个影响是对数值算法的所谓的特殊功能描述的物理和技术过程,并为对角化的矩阵,其中工业应用也可以设想。研究生教育是研究工作的一个组成部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ulrich Jentschura其他文献

Ulrich Jentschura的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ulrich Jentschura', 18)}}的其他基金

PM: Precision Low-Energy Quantum Electroynamic Theory and Fundamental Processes
PM:精密低能量子电动力学理论和基本过程
  • 批准号:
    2110294
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Quantum Field Theory, Atomic Physics and General Relativity
量子场论、原子物理学和广义相对论
  • 批准号:
    1710856
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Quantum Vacuum and Atoms: Exploring QED and Atom-Surface Interactions with the Help of Advanced Numerical Methods
量子真空和原子:借助先进数值方法探索 QED 和原子表面相互作用
  • 批准号:
    1403973
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Advanced Computational Physics in Atomic and Laser Science
原子和激光科学中的高级计算物理
  • 批准号:
    1068547
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Observational and Modeling Investigations of Pulsating Aurora Electrodynamics
职业:脉动极光电动力学的观测和建模研究
  • 批准号:
    2339961
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Exploring electrodynamics of correlated 2D transition metal dichalcogenides using on-chip terahertz spectroscopy
使用片上太赫兹光谱探索相关二维过渡金属二硫属化物的电动力学
  • 批准号:
    2311205
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
ElectroProtein - Atomic-scale electrodynamics of protein-liquid interfaces
ElectroProtein - 蛋白质-液体界面的原子级电动力学
  • 批准号:
    EP/X022471/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Fellowship
Light-matter interactions in realistic settings: unifying open quantum systems with macroscopic quantum electrodynamics
现实环境中的光与物质相互作用:将开放量子系统与宏观量子电动力学统一起来
  • 批准号:
    2888362
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
EISCAT_3D: Fine-scale structuring, scintillation, and electrodynamics (FINESSE)
EISCAT_3D:精细结构、闪烁和电动力学 (FINESSE)
  • 批准号:
    NE/W003015/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
EISCAT_3D FINESSE: Fine-scale Structuring, Scintillation, and Electrodynamics
EISCAT_3D FINESSE:精细结构、闪烁和电动力学
  • 批准号:
    NE/W003074/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
EISCAT_3D: Fine-scale structuring, scintillation, and electrodynamics (FINESSE)
EISCAT_3D:精细结构、闪烁和电动力学 (FINESSE)
  • 批准号:
    NE/W002981/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Scalable cavity quantum electrodynamics
可扩展腔量子电动力学
  • 批准号:
    2745597
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
EISCAT_3D: Fine-scale structuring, scintillation, and electrodynamics (FINESSE)
EISCAT_3D:精细结构、闪烁和电动力学 (FINESSE)
  • 批准号:
    NE/W002914/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
EISCAT_3D: Fine-scale structuring, scintillation, and electrodynamics (FINESSE)
EISCAT_3D:精细结构、闪烁和电动力学 (FINESSE)
  • 批准号:
    NE/W003066/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了