Advanced Computational Physics in Atomic and Laser Science
原子和激光科学中的高级计算物理
基本信息
- 批准号:1068547
- 负责人:
- 金额:$ 26.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum electrodynamics is a cornerstone of our current understanding of nature, as it describes the best understood of the four fundamental forces, the electromagnetic force, including relativistic and quantum effects which modify this force at very short distances. Almost all of the most accurately known fundamental constants are determined using the theory, and theoretical calculations in this field require some of the most advanced computational methods devised so far in theoretical physics. It is planned to illuminate the nature of various higher-order correction terms that currently influence one of the most pressing problems in theoretical physics, namely, the resolution of the muonic hydrogen conundrum, where theory and experiment are not in agreement. Various related interactions, including the loss of energy due to non-contact friction, have not been sufficiently understood in the microscopic world and yet are important, e.g., for the design of nanostructured devices (nanotechnology).The broader impact of the work will include potential applications in the nanoworld, and the determination of fundamental constants, as well as investigations regarding their conceivable variation with time. Another impact is on numerical algorithms for so-called special functions describing physical and technical processes, and for the diagonalization of matrices where industrial applications can also be envisaged. The education of a graduate student forms an integral part of the proposed research endeavour.
量子电动力学是我们目前对自然的理解的基石,因为它描述了四种基本力中最好的理解,电磁力,包括相对论和量子效应,它们在很短的距离内改变了这种力。 几乎所有已知的最精确的基本常数都是使用该理论确定的,并且该领域的理论计算需要理论物理学中迄今为止设计的一些最先进的计算方法。计划阐明各种高阶修正项的性质,这些修正项目前影响理论物理中最紧迫的问题之一,即μ介子氢难题的解决方案,其中理论和实验不一致。各种相关的相互作用,包括由于非接触摩擦引起的能量损失,在微观世界中尚未得到充分理解,但仍然很重要,例如,这项工作的更广泛影响将包括在世界上的潜在应用,确定基本常数,以及研究它们随时间的可能变化。 另一个影响是对数值算法的所谓的特殊功能描述的物理和技术过程,并为对角化的矩阵,其中工业应用也可以设想。研究生教育是拟议研究工作的一个组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ulrich Jentschura其他文献
Ulrich Jentschura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ulrich Jentschura', 18)}}的其他基金
PM: Precision Low-Energy Quantum Electroynamic Theory and Fundamental Processes
PM:精密低能量子电动力学理论和基本过程
- 批准号:
2110294 - 财政年份:2021
- 资助金额:
$ 26.4万 - 项目类别:
Continuing Grant
Quantum Field Theory, Atomic Physics and General Relativity
量子场论、原子物理学和广义相对论
- 批准号:
1710856 - 财政年份:2017
- 资助金额:
$ 26.4万 - 项目类别:
Standard Grant
Quantum Vacuum and Atoms: Exploring QED and Atom-Surface Interactions with the Help of Advanced Numerical Methods
量子真空和原子:借助先进数值方法探索 QED 和原子表面相互作用
- 批准号:
1403973 - 财政年份:2014
- 资助金额:
$ 26.4万 - 项目类别:
Continuing Grant
Quantum Electrodynamics in Fundamental Physics and Applications
基础物理及应用中的量子电动力学
- 批准号:
0855454 - 财政年份:2009
- 资助金额:
$ 26.4万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
LEAPS-MPS: Computational Methods for Many-Physics Problems Involving Multi-Material Flows
LEAPS-MPS:涉及多材料流的许多物理问题的计算方法
- 批准号:
2302080 - 财政年份:2023
- 资助金额:
$ 26.4万 - 项目类别:
Standard Grant
True Computational Bio-Mimetics Explored by Multi-Physics Coupling Simulation for Both Free Flight and Intelligence in Insects
通过多物理耦合模拟探索真正的计算仿生学,以实现昆虫的自由飞行和智能
- 批准号:
23H00475 - 财政年份:2023
- 资助金额:
$ 26.4万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Enabling Rational Design of Drug Targeting Protein-Protein Interactions with Physics-based Computational Modeling
通过基于物理的计算模型合理设计靶向药物的蛋白质-蛋白质相互作用
- 批准号:
10710974 - 财政年份:2023
- 资助金额:
$ 26.4万 - 项目类别:
Tackling the computational bottleneck in precision particle physics
解决精密粒子物理的计算瓶颈
- 批准号:
DP220103512 - 财政年份:2022
- 资助金额:
$ 26.4万 - 项目类别:
Discovery Projects
FMitF: Track 1: Foundational Approaches for End-to-end Formal Verification of Computational Physics
FMitF:轨道 1:计算物理端到端形式验证的基础方法
- 批准号:
2219997 - 财政年份:2022
- 资助金额:
$ 26.4万 - 项目类别:
Standard Grant
Computational techniques for studying the interactions of radiation with matter and applications in radiotherapy physics
研究辐射与物质相互作用的计算技术及其在放射治疗物理中的应用
- 批准号:
RGPIN-2016-06267 - 财政年份:2022
- 资助金额:
$ 26.4万 - 项目类别:
Discovery Grants Program - Individual
Computational Quantum Many-Body Physics
计算量子多体物理
- 批准号:
CRC-2017-00264 - 财政年份:2022
- 资助金额:
$ 26.4万 - 项目类别:
Canada Research Chairs
Computational Physics/Biophysics
计算物理/生物物理学
- 批准号:
CRC-2020-00225 - 财政年份:2022
- 资助金额:
$ 26.4万 - 项目类别:
Canada Research Chairs
Physics-informed Computational Framework for Optimised Microfluidic Systems
用于优化微流体系统的物理信息计算框架
- 批准号:
FT200100446 - 财政年份:2021
- 资助金额:
$ 26.4万 - 项目类别:
ARC Future Fellowships
Computational Physics/Biophysics
计算物理/生物物理学
- 批准号:
CRC-2020-00225 - 财政年份:2021
- 资助金额:
$ 26.4万 - 项目类别:
Canada Research Chairs