Pressure- and Field-Tuned Spectroscopy of Strongly Spin-Lattice-Coupled Materials

强自旋晶格耦合材料的压力和场调谐光谱

基本信息

项目摘要

TECHNICAL ABSTRACTStrong coupling between atomic spins and the lattice in "strongly correlated" materials is associated with many scientifically important and technologically useful phenomena, including orbital ordering, multiferroic behavior, and magnetic-field- and pressure-tunable phase transitions. This individual investigator award supports a project that will involve the growth, characterization, and optical spectroscopic measurement of various single-crystal ruthenium-oxide, magnesium-oxide, and vanadium-oxide materials whose properties have highly enhanced ("colossal") responses to applied pressure and/or magnetic field, making these materials promising candidates for the next generation of "functional" materials and devices. The goal of this project is to understand the microscopic origin of these exotic and useful properties, by employing magnetic-field- and pressure-tuned optical spectroscopy to investigate the manner in which spin-lattice coupling and spin/lattice dynamics evolve through various low temperature, high-magnetic-field, and high pressure phases of these materials. Among the anticipated outcomes of this project are (i) elucidation of the microscopic origin of the colossal sensitivities these materials exhibit in response to high pressures and applied magnetic fields; (ii) insights into how to grow new materials with enhanced functional properties; and (iii) high quality single-crystal samples of correlated materials that will be made available to others in the scientific community. This project will also provide broad training to 2 graduate students in single-crystal growth and pressure- and magnetic-field-tuned optical spectroscopy, and will be used as part of an outreach program to interest K-12 students in the sciences via tours of the high field/high pressure optical laboratory. NON-TECHNICAL ABSTRACTIn many oxide-based materials, there is a particularly strong interaction between the atomic magnetic moments (which can be thought of as small bar magnets attached to the atoms) and the ordered "lattice" structure of the atoms; one important consequence of this strong interaction is that applied pressures or magnetic fields can be used to sensitively control the mobility of the electrons in, the magnetic properties of, and even the structural shape of, these materials. As a consequence, these "highly tunable" materials are promising candidates for the next generation of multi-functional switches, sensors, shape-memory structures, and other useful electronic/magnetic devices. This individual investigator award supports a project that will involve the growth of these novel oxide-based materials, and the study of the basic mechanisms responsible for their exotic properties by scattering light (i.e., "photons") from the materials while tuning the materials' properties through their novel phases found at high pressures and high magnetic fields. The goals of this project are to better understand the conditions responsible for the "highly tunable" properties of these materials (i) to elucidate how matter behaves under novel environmental conditions, and (ii) to develop new materials with enhanced functional properties. This project will also provide broad training to 2 graduate students in materials growth and state-of-the-art light scattering methods, and will be used as part of an outreach program to interest K-12 students in the sciences via tours of the high field/high pressure optical laboratory.
技术摘要在“强关联”材料中,原子自旋和晶格之间的强耦合与许多科学上重要的和技术上有用的现象有关,包括轨道有序、多铁性行为以及磁场和压力可调相变。 该个人研究者奖支持一个项目,该项目将涉及各种单晶氧化铈,氧化镁和氧化钒材料的生长,表征和光谱测量,这些材料的特性对施加的压力和/或磁场具有高度增强(“巨大”)的响应,使这些材料成为下一代“功能”材料和设备的有希望的候选人。 该项目的目标是了解这些奇异的和有用的属性的微观起源,通过采用磁场和压力调谐光谱学来研究自旋晶格耦合和自旋/晶格动力学通过这些材料的各种低温,高磁场和高压相演变的方式。 该项目的预期成果包括:(一)阐明这些材料对高压和外加磁场的巨大敏感性的微观起源;(二)深入了解如何生长具有增强功能特性的新材料;(三)将向科学界其他人提供相关材料的高质量单晶样品。 该项目还将为2名研究生提供单晶生长和压力和磁场调谐光谱学方面的广泛培训,并将作为外展计划的一部分,通过高场/高压光学实验室的图尔斯之旅,使K-12学生对科学感兴趣。在许多氧化物基材料中,原子磁矩之间存在特别强的相互作用(可以认为是附着在原子上的小条形磁铁)和原子的有序“晶格”结构;这种强相互作用的一个重要结果是所施加的压力或磁场可用于灵敏地控制电子在其中的迁移率,磁特性,甚至这些材料的结构形状。 因此,这些“高度可调”的材料是下一代多功能开关、传感器、形状记忆结构和其他有用的电子/磁性器件的有希望的候选者。 这项个人研究者奖支持一个项目,该项目将涉及这些新型氧化物基材料的生长,以及通过散射光(即,“光子”),同时通过在高压和高磁场下发现的新相来调节材料的性质。 该项目的目标是更好地了解这些材料的“高度可调”特性的条件(i)阐明物质在新环境条件下的行为,以及(ii)开发具有增强功能特性的新材料。 该项目还将为2名研究生提供材料生长和最先进的光散射方法方面的广泛培训,并将作为外展计划的一部分,通过高场/高压光学实验室的图尔斯之旅,使K-12学生对科学感兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

S. Lance Cooper其他文献

S. Lance Cooper的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('S. Lance Cooper', 18)}}的其他基金

Elucidating Pressure- and Field-Tuned Phases and Multifunctionality in Magnetic Spinels
阐明磁性尖晶石中的压力和场调谐相和多功能性
  • 批准号:
    1800982
  • 财政年份:
    2018
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Exploration of Pressure- and Field-Tuned Phenomena and Phases in Mn- and V-based Spinels
锰基和钒基尖晶石中压力和场调谐现象和相的探索
  • 批准号:
    1464090
  • 财政年份:
    2015
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
Spectroscopy of Pressure- and Field-Induced Insulator-Metal Transitions: Exploring Charge- and Spin-Organization in Complex Oxides and Magnetic Semiconductors
压力和场引起的绝缘体-金属转变的光谱学:探索复杂氧化物和磁性半导体中的电荷和自旋组织
  • 批准号:
    0244502
  • 财政年份:
    2003
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Inelastic Light Scattering Studies of Kondo Insulators and Other Low Carrier Density Kondo Systems
Kondo 绝缘体和其他低载流子密度 Kondo 系统的非弹性光散射研究
  • 批准号:
    9700716
  • 财政年份:
    1997
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
  • 批准号:
    21506066
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Studentship
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
REU Site: Field and laboratory studies of coastal marine processes at the Shannon Point Marine Center
REU 站点:香农角海洋中心沿海海洋过程的现场和实验室研究
  • 批准号:
    2349136
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
腫瘍ウイルスの共感染は口腔癌のField cancerizationに関与しているか?
肿瘤病毒合并感染是否与口腔癌的现场癌化有关?
  • 批准号:
    24K13135
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
  • 批准号:
    24K11201
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Field emission scanning electron microscope
场发射扫描电子显微镜
  • 批准号:
    532701230
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Major Research Instrumentation
Billiard Field Theory
台球场论
  • 批准号:
    EP/Y023005/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Research Grant
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
  • 批准号:
    EP/Y002474/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了