Conference: Arithmetic quantum field theory

会议:算术量子场论

基本信息

  • 批准号:
    2400553
  • 负责人:
  • 金额:
    $ 4.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

The conference Arithmetic Quantum Field Theory will be held at the Harvard Center of Mathematical Sciences and Applications (CMSA) on March 25-29 2024. This will be an in-person gathering of approximately 70 researchers - graduate students, postdocs, and faculty in mathematics and physics, available in hybrid mode to an unlimited number of outside participants. A central focus of the conference - and the dedicated aim of its first day - is to encourage a high level of participation by women in math and physics. The first day is designed to encourage junior researchers to come and network, give talks in a friendly environment, and participate without concern over the precise fit of their research to the narrow theme of the workshop. The conference Arithmetic Quantum Field Theory, and the two-month program of the same title it concludes, are aimed at catalyzing interactions between mathematicians and physicists by disseminating exciting new connections emerging between quantum field theory and algebraic number theory, and in particular between the fundamental invariants of each: partition functions and L-functions. On one hand, there has been tremendous progress in the past decade in our understanding of the algebraic structures underlying quantum field theory as expressed in terms of the geometry and topology of low-dimensional manifolds. On the other hand, the arithmetic topology dictionary provides a sturdy bridge between the topology of manifolds and the arithmetic of number fields. Thus, one can now port over quantum field theoretic ideas to number theory. The program will bring together a wide range of mathematicians and physicists working on adjacent areas to explore the emerging notion of arithmetic quantum field theory as a tool to bring quantum physics to bear on questions of interest for the theory of automorphic forms, harmonic analysis and L-functions, and conversely to explore potential geometric and physical consequences of arithmetic ideas.The conference website is https://cmsa.fas.harvard.edu/event/aqftconf/ where recordings of the talks and notes from lectures will be made widely available.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
算术量子场论会议将于2024年3月25日至29日在哈佛数学科学与应用中心(CMSA)举行。这将是一个约70名研究人员的亲自聚会-研究生,博士后和数学和物理教师,以混合模式提供给无限数量的外部参与者。 会议的一个中心焦点--以及第一天的专门目标--是鼓励妇女高水平地参与数学和物理。第一天的目的是鼓励年轻的研究人员来和网络,在友好的环境中进行演讲,并参与不关心他们的研究的精确适合研讨会的狭窄主题。会议算术量子场论,以及为期两个月的计划,它的结论相同的标题,旨在催化数学家和物理学家之间的相互作用,传播令人兴奋的新的联系之间出现的量子场论和代数数论,特别是之间的基本不变量:分区函数和L函数。 一方面,在过去的十年里,我们对量子场论的代数结构的理解有了巨大的进步,这些结构是用低维流形的几何和拓扑来表达的。另一方面,算术拓扑字典在流形拓扑和数域算术之间架起了一座坚实的桥梁。因此,人们现在可以将量子场论的思想移植到数论中。该计划将汇集广泛的数学家和物理学家在相邻领域的工作,探索算术量子场论的新兴概念,作为一种工具,使量子物理学承担的自守形式,调和分析和L-函数理论的兴趣问题,并反过来探索算术思想的潜在几何和物理后果。会议网站是https://cmsa.fas.harvard.edu/event/aqftconf/,其中记录的会谈该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Freed其他文献

Daniel Freed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Freed', 18)}}的其他基金

Topology, Geometry, and Physics
拓扑、几何和物理
  • 批准号:
    1611957
  • 财政年份:
    2016
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Topology and Physics
拓扑和物理
  • 批准号:
    1207817
  • 财政年份:
    2012
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
RTG: Unified Training in Geometry and Topology
RTG:几何和拓扑的统一训练
  • 批准号:
    1148490
  • 财政年份:
    2012
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: In and Around Theory X
FRG:协作研究:X 理论及其周边
  • 批准号:
    1160461
  • 财政年份:
    2012
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
EMSW21-RTG: Unified Approach to Training in Geometry
EMSW21-RTG:几何训练的统一方法
  • 批准号:
    0636557
  • 财政年份:
    2007
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
Algebraic Topology, Representation Theory, and Theoretical Physics
代数拓扑、表示论和理论物理
  • 批准号:
    0603964
  • 财政年份:
    2006
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
Geometry and Physics
几何与物理
  • 批准号:
    0305505
  • 财政年份:
    2003
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Geometry and Physics
几何与物理
  • 批准号:
    0072675
  • 财政年份:
    2000
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topology, Geometry and Physics
数学科学:拓扑、几何和物理
  • 批准号:
    9626698
  • 财政年份:
    1996
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topology, Geometry, and Physics
数学科学:拓扑、几何和物理
  • 批准号:
    9307446
  • 财政年份:
    1993
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant

相似海外基金

NSF-BSF: Derived and quantum corrected structures on arithmetic and geometric moduli
NSF-BSF:算术和几何模量的导出和量子校正结构
  • 批准号:
    2200914
  • 财政年份:
    2022
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
Approximate Quantum Arithmetic Units
近似量子算术单位
  • 批准号:
    580808-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Alliance Grants
Architectures and Distribution Arithmetic for Coupling Classical Computers to Noisy Intermediate-Scale Quantum Computers
用于将经典计算机耦合到嘈杂的中级量子计算机的架构和分布算法
  • 批准号:
    EP/V047507/1
  • 财政年份:
    2021
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Research Grant
Interdisciplinary research of arithmetic geometry and quantum field theory related to the moduli space of hyperbolic curves
双曲曲线模空间相关的算术几何与量子场论的跨学科研究
  • 批准号:
    18K13385
  • 财政年份:
    2018
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Arithmetic Quantum Unique Ergodicity for Higher Dimensional Congruence Manifolds
高维同余流形的算术量子独特遍历性
  • 批准号:
    427403-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Arithmetic Quantum Unique Ergodicity for Higher Dimensional Congruence Manifolds
高维同余流形的算术量子独特遍历性
  • 批准号:
    427403-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
RUI: Quantum, arithmetic, and categorial analysis of convex polytopes
RUI:凸多面体的量子、算术和分类分析
  • 批准号:
    1301487
  • 财政年份:
    2013
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Arithmetic Quantum Unique Ergodicity for Higher Dimensional Congruence Manifolds
高维同余流形的算术量子独特遍历性
  • 批准号:
    427403-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of arithmetic topology and arithmetic quantum field theory
算术拓扑和算术量子场论的发展
  • 批准号:
    24340005
  • 财政年份:
    2012
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamics, Spectral Theory and Arithmetic in Quantum Chaos
量子混沌中的动力学、谱论和算术
  • 批准号:
    1101596
  • 财政年份:
    2011
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了