Geometric Methods in the Control of Bipedal Walking Robots

双足行走机器人控制中的几何方法

基本信息

  • 批准号:
    0856368
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

The object of this project is to develop control algorithms for bipedal walking robots using concepts of geometric reduction. Geometric reduction takes advantage of certain symmetry properties in the dynamic equations of bipedal robots and facilitates the computation of lower dimensional models for analysis and control design. The goal is to enable control concepts developed for two-dimensional, or planar, bipeds to be applied to fully three-dimensional bipeds. In this way, the complexity of the control problem for three-dimensional walking robots is greatly reduced. The project will also investigate the effects of asymmetries in leg parameters, such as leg length and leg mass, on the existence and properties of passive gaits. Preliminary investigations indicate that asymmetry in leg parameters, such as leg mass, results in qualitative changes in gait, such as period-doubling bifurcations and chaotic motion. Deliverables from this research include new control algorithms, new simulation models and graphical simulation tools for visualization of simulation data.The practical application of this research is in the design of walking robots that have improved performance capabilities over existing machines. Current walking robots have limited range due to poor energy utilization and are limited in their ability to navigate uneven terrain. More practical and more efficient walking machines will result once the full power of available theoretical tools is brought to bear on the analysis and design questions in this project. The tools developed in this project will also contribute to a better understanding of human locomotion, which will result in applications in biomechanics and biomedicine, such as the design of improved prosthetic devices, the development of falls prevention programs for the elderly, and rehabilitation techniques. The study of bipeds with parameter asymmetry is motivated by the desire to understand the effect of asymmetry of human gait on walking stability, performance, and gait disorders. Our research results will also be used to create demonstrations and presentations for middle school and high school students to be used as recruiting tools. Our past experience has shown that robotics is an excellent vehicle to attract and retain students in engineering.
本项目的目的是利用几何归约的概念开发两足步行机器人的控制算法。几何约化利用了双足机器人动力学方程中的某些对称性,便于计算用于分析和控制设计的低维模型。其目标是将为二维或平面两足动物开发的控制概念应用于完全三维的两足动物。这样就大大降低了三维行走机器人控制问题的复杂性。该项目还将调查腿部参数的不对称性,如腿部长度和腿部质量,对被动步态的存在和特性的影响。初步研究表明,腿部参数的不对称,如腿部质量,会导致步态的质变,如倍周期分叉和混沌运动。这项研究的成果包括新的控制算法、新的仿真模型和可视化仿真数据的图形仿真工具。该研究的实际应用是设计性能优于现有机器的步行机器人。目前的步行机器人由于能源利用率低,其续航能力有限,在崎岖地形中的导航能力也有限。一旦将现有理论工具的全部力量用于本项目中的分析和设计问题,将产生更实用和更高效的步行机器。该项目开发的工具还将有助于更好地了解人类运动,这将导致在生物力学和生物医学中的应用,如改进的假肢设备的设计,为老年人开发预防跌倒的程序,以及康复技术。对参数不对称两足动物的研究是为了了解人类步态不对称对步行稳定性、性能和步态障碍的影响。我们的研究成果也将被用来为初中生和高中生创建演示和演示,作为招聘工具。我们过去的经验表明,机器人是吸引和留住工程专业学生的绝佳工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Spong其他文献

Mark Spong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Spong', 18)}}的其他基金

Collaborative Research: A Control Theoretic Framework for Guided Folding and Unfolding of Protein Molecules
合作研究:蛋白质分子引导折叠和展开的控制理论框架
  • 批准号:
    2153901
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Student Travel Support for the 2010 IEEE Conference on Decision and Control. To be Held in Atlanta, Georgia, December 15-17, 2010
2010 年 IEEE 决策与控制会议的学生旅行支持。
  • 批准号:
    1063815
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Control of Multi-Agent and Networked Systems
多代理和网络系统的控制
  • 批准号:
    0725433
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Passivity Based Control in Bipedal Locomotion
双足运动中基于被动的控制
  • 批准号:
    0510119
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Student Travel Support for the 2005 IEEE Conference on Decision and Control
2005 年 IEEE 决策与控制会议学生旅行支持
  • 批准号:
    0555373
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
U.S.-France Cooperative Research: Passivity Based Control of Networked Control Systems
美法合作研究:网络控制系统的无源控制
  • 批准号:
    0128656
  • 财政年份:
    2002
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Teleautonomy in Networked Robotic Systems
协作研究:网络机器人系统中的远程自治
  • 批准号:
    0233314
  • 财政年份:
    2002
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Workshop on Future Directions on Nonlinear Control of Mechanical Systems. To be Held October 5, 2002, in Monticello, Illinois
机械系统非线性控制未来方向研讨会。
  • 批准号:
    0228869
  • 财政年份:
    2002
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Layered Control Architectures for Complex Networked Systems
复杂网络系统的分层控制架构
  • 批准号:
    0122412
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Workshop on New Directions in Control Engineering Education, to be held at the University of Illinois, Urbana-Champaign, October 4-6, 1998
控制工程教育新方向研讨会,将于 1998 年 10 月 4-6 日在伊利诺伊大学厄巴纳-香槟分校举行
  • 批准号:
    9812431
  • 财政年份:
    1998
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Geometric and statistical methods for image analysis and control
图像分析和控制的几何和统计方法
  • 批准号:
    RGPIN-2016-06742
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and statistical methods for image analysis and control
图像分析和控制的几何和统计方法
  • 批准号:
    RGPIN-2016-06742
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and statistical methods for image analysis and control
图像分析和控制的几何和统计方法
  • 批准号:
    RGPIN-2016-06742
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and statistical methods for image analysis and control
图像分析和控制的几何和统计方法
  • 批准号:
    RGPIN-2016-06742
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and statistical methods for image analysis and control
图像分析和控制的几何和统计方法
  • 批准号:
    RGPIN-2016-06742
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and statistical methods for image analysis and control
图像分析和控制的几何和统计方法
  • 批准号:
    RGPIN-2016-06742
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric methods in switched control system analysis and design
开关控制系统分析与设计中的代数和几何方法
  • 批准号:
    DP110102704
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Projects
Differential-Geometric and Nonsmooth Methods in Deterministic Finite-Dimensional Control
确定性有限维控制中的微分几何和非光滑方法
  • 批准号:
    0509930
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Travel Support: Variational Analysis and Geometric Methods in Optimal Control (Special Session of IEEE Conference on Decision and Control); Las Vegas, Nevada
差旅支持:最优控制中的变分分析和几何方法(IEEE决策与控制会议特别会议);
  • 批准号:
    0245279
  • 财政年份:
    2003
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Nonsmooth and Geometric Methods in Nonlinear Control
非线性控制中的非光滑和几何方法
  • 批准号:
    0103901
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了