Collaborative Research: Adaptive Maintenance Planning Based on Evolving Residual Life Distributions
协作研究:基于演化剩余寿命分布的自适应维护规划
基本信息
- 批准号:0856702
- 负责人:
- 金额:$ 32.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant provides funding for the development of broadly applicable analytical and statistical tools that determine adaptive maintenance policies for complex systems that deteriorate over time. In contrast to existing techniques, these new mathematical models will link low-level, sensor-based condition data with high-level maintenance decision making. In particular, the techniques will determine how often condition-based data should be collected, when repairs or replacements of critical components should take place, and when spare parts should be acquired in anticipation of impending failures. The resulting policies will be adaptive in nature, meaning that they will revise the timing of maintenance actions based on observed data. For individual components, Bayesian statistical techniques will be developed to model degradation patterns and the evolving residual life distribution of the component. At the system level, environmental data will be used to develop versatile stochastic failure models to estimate the system's residual life distribution. For both cases, Markov decision process models that effectively convert these residual life distributions into cost-optimal, adaptive maintenance policies will be analyzed. Laboratory experiments will be performed to assess the applicability of the techniques to real problems and to validate the models. If successful, this research will improve the way that firms translate vast quantities of condition monitoring data into maintenance decisions. Determining the optimal timing of data collection, repairs and replacements, and spare parts ordering is vital to the maintenance of engineering systems including manufacturing systems, aging infrastructure, aviation systems, and many others. Performing the right type of maintenance activity at the right time will reduce maintenance costs while improving safety.
这笔赠款为开发广泛适用的分析和统计工具提供资金,这些工具为随着时间的推移而恶化的复杂系统确定适应性维护政策。 与现有技术相比,这些新的数学模型将把基于传感器的低级状态数据与高级维护决策联系起来。 特别是,这些技术将确定应多久收集一次基于状况的数据,何时应进行关键部件的维修或更换,以及在预计即将发生故障时应何时获取备件。 由此产生的政策将是适应性的,这意味着他们将根据观察到的数据修改维护行动的时间。 对于单个组件,将开发贝叶斯统计技术,以模拟组件的退化模式和不断变化的剩余寿命分布。 在系统一级,环境数据将用于开发通用的随机故障模型,以估计系统的剩余寿命分布。 对于这两种情况下,马尔可夫决策过程模型,有效地将这些剩余寿命分布转换为成本最优,自适应的维修政策进行分析。将进行实验室实验,以评估技术的适用性,以真实的问题,并验证模型。如果成功,这项研究将改善公司将大量状态监测数据转化为维护决策的方式。 确定数据收集、维修和更换以及备件订购的最佳时间对于维护工程系统(包括制造系统、老化的基础设施、航空系统等)至关重要。 在正确的时间执行正确类型的维护活动将降低维护成本,同时提高安全性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Kharoufeh其他文献
Jeffrey Kharoufeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Kharoufeh', 18)}}的其他基金
Effective Management of Operating and Maintenance Activities for Wind Turbines
风力涡轮机运行和维护活动的有效管理
- 批准号:
1266194 - 财政年份:2013
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Collaborative Research: NECO: A Mathematical Framework for the Performance Evaluation of Large-Scale Sensor Networks
合作研究:NECO:大规模传感器网络性能评估的数学框架
- 批准号:
0831707 - 财政年份:2008
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316614 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335800 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316613 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324936 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324937 - 财政年份:2024
- 资助金额:
$ 32.47万 - 项目类别:
Standard Grant