Improving monitoring data utility in acute care medicine using mechanistic mathematical models of physiological processes
使用生理过程的机械数学模型提高急症护理医学中的监测数据效用
基本信息
- 批准号:192127833
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2011
- 资助国家:德国
- 起止时间:2010-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Medical monitoring technology has advanced significantly over the past decades. In the particularly data rich environments of anaesthesiology and intensive care, these advancements have largely failed to translate into improved outcomes. This may at least partially be attributable to the human inability to fully assimilate, quantitatively interpret, and utilize for patient status assessment, prediction, and therapy optimization the quantitative information contained in the multimodal time-series of biosignals and their interactions, suggesting a role for computerized decision support. The research plan outlined in this proposal will test the hypothesis that clinical data interpretation, prediction, and therapeutic optimization based on probabilistic inversion of mechanistic mathematical models of physiology describing quantitatively the highly nonlinear, coupled physiological processes generating the observations can help to alleviate this situation and provide physicians in anaesthesiology and intensive care with a computerized decision support tool that integrates clinical data from all available monitoring modalities and provides output that is readily accessible to physiological and clinical interpretation, with the potential to realize a fully personalized approach to acute care that is nevertheless accessible to validation satisfying the criteria of Evidence Based Medicine. The proposed project will focus on model and methods development and validation in purely observational studies targeting assessment and prediction of hemodynamic status to set the stage for future interventional evaluations of the clinical usefulness of the developed methodologies.
在过去的几十年里,医疗监测技术有了很大的进步。在麻醉学和重症监护的数据特别丰富的环境中,这些进展在很大程度上未能转化为改善的结果。这可能至少部分归因于人类不能完全吸收、定量解释和利用包含在多模式生物信号时间序列及其相互作用中的定量信息来进行患者状态评估、预测和治疗优化,这暗示了计算机化决策支持的作用。这项建议中概述的研究计划将测试这样一种假设,即基于定量描述产生观察的高度非线性、耦合的生理过程的生理学机械数学模型的概率倒置的临床数据解释、预测和治疗优化有助于缓解这种情况,并为麻醉学和重症监护医生提供计算机化的决策支持工具,该工具集成了所有可用的监测模式的临床数据,并提供易于获得的生理和临床解释的输出,有可能实现完全个性化的急性护理方法,但仍可获得符合循证医学标准的验证。拟议的项目将侧重于纯观察性研究中模型和方法的开发和验证,目标是评估和预测血流动力学状态,为未来对所开发方法的临床有效性进行介入性评估奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Privatdozent Dr. Sven Zenker其他文献
Privatdozent Dr. Sven Zenker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
RGD-68Ga@AuNCs PET监测PRMT5通过VEGFA调节肺腺癌血管新生的功能及机制
- 批准号:82372007
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
相似海外基金
Improving glycemic control among underserved patients with insulin-treated type 2 diabetes through nurse-led, app-based behavioral intervention
通过护士主导、基于应用程序的行为干预,改善接受胰岛素治疗的 2 型糖尿病患者的血糖控制
- 批准号:
10591769 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving power grid frequency monitoring through high-fidelity continuous-point-on-wave (CPOW) data
通过高保真连续波点 (CPOW) 数据改善电网频率监测
- 批准号:
10074122 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Chrono-exercise is Medicine: Improving Blood Pressure and Vascular Function through Chronotherapy
计时运动是良药:通过计时疗法改善血压和血管功能
- 批准号:
10658613 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving Husbandry and Data Reproducibility Through Automated Health Monitoring in Zebrafish Facilities
通过斑马鱼设施的自动健康监测改善饲养和数据再现性
- 批准号:
10761190 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Reducing the Risk and Economic burden of Recurrent stroke by improving medication adherence using a Novel SMART Pill CONTAINER, Cap, and Health Literacy Technologies
使用新型智能药丸容器、瓶盖和健康素养技术提高用药依从性,降低复发性中风的风险和经济负担
- 批准号:
10601743 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving Patient Care Through Objective Monitoring of At-Home Repetitive Ritual Behaviors in Obsessive-Compulsive Disorder
通过客观监测强迫症患者的家庭重复仪式行为来改善患者护理
- 批准号:
10384150 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Improving Thoracic Surgical Care using electronic Patient-Reported Outcomes (ePROs)
使用电子患者报告结果 (ePRO) 改善胸部外科护理
- 批准号:
10545184 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Improving Thoracic Surgical Care using electronic Patient-Reported Outcomes (ePROs)
使用电子患者报告结果 (ePRO) 改善胸部外科护理
- 批准号:
10371437 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Establishing an Artificially Intelligent Framework for Improving Therapeutic Alliance with Obese African American Youth and Caregivers through Multimodal Monitoring of Empathetic Accuracy and Interper
建立人工智能框架,通过共情准确性和 Interper 的多模式监测来改善肥胖非裔美国青年和护理人员的治疗联盟
- 批准号:
10710204 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Improving the Detection of Hypertension and its Control
改善高血压的检测及其控制
- 批准号:
10573169 - 财政年份:2022
- 资助金额:
-- - 项目类别: