Singularities and Complexity in CR Geometry

CR 几何中的奇点和复杂性

基本信息

  • 批准号:
    0900885
  • 负责人:
  • 金额:
    $ 9.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The PI proposes to study the theory of singularities and complexity in CR geometry. In particular the PI proposes to study the connections between his previous work on Levi-flat hypersurfaces, properties of nowhere minimal submanifolds of complex euclidean space, and the complexity of proper maps between balls in different dimensions. The common link can be described as studying the set where two squared norms of holomorphic maps are equal, and relating the CR geometric information of the solution set of this equation to the complexity of the maps. The PI proposes to prove that the singular set of a Levi-flat hypervariety is Levi-flat, to classify algebraic Levi-flat hypervarieties in complex projective space, to study the regularity of Levi-flat hypersurfaces with boundary, to extend the work on complexity of proper maps between balls, and finally, to further develop computational methods to help in gaining insight into the combinatorial aspects of the proper maps of balls and related problems.Study of several complex variables, of which CR geometry is part, is central to the understanding of modern mathematics, physics and other applied sciences. For example, to understand behavior of differential equations, one must understand the geometry of the space where the equation lives. The theory of singularities and complexity in CR geometry is not well understood currently, and there is great interest in the CR geometry community in building proper foundations in this area. Furthermore, there is fertile ground to build connections with other areas of mathematics. The study of proper maps of balls has already yielded unexpected connections with number theory, combinatorics, linear algebra, and has computational aspects that may perhaps yield advances in symbolic and numerical computation. Many of the methods applied in this research are easily accessible to beginning graduate and even advanced undergraduate students. The project will therefore not only advance the understanding of this new area in complex analysis, but may serve to involve young researchers.
该奖项根据 2009 年美国复苏和再投资法案(公法 111-5)提供资金。 PI 提议研究 CR 几何中的奇点和复杂性理论。 特别是,PI 提议研究他之前关于列维平坦超曲面的工作、复杂欧几里得空间的无处最小子流形的性质以及不同维度的球之间的固有映射的复杂性之间的联系。 共同的联系可以描述为研究全纯​​映射的两个平方范数相等的集合,并将该方程的解集的CR几何信息与映射的复杂度相关联。 PI 提议证明 Levi 平超变性的奇异集是 Levi 平,对复杂射影空间中的代数 Levi 平超变性进行分类,研究带边界的 Levi 平超曲面的正则性,扩展球之间真映射复杂性的工作,最后,进一步开发计算方法以帮助深入了解组合方面 球的固有映射和相关问题。对几个复杂变量的研究(其中 CR 几何是其中的一部分)是理解现代数学、物理学和其他应用科学的核心。 例如,要理解微分方程的行为,必须了解方程所在空间的几何形状。 目前,CR 几何中的奇点和复杂性理论尚未得到很好的理解,CR 几何界对在该领域建立适当的基础抱有极大的兴趣。 此外,还有与其他数学领域建立联系的肥沃土壤。 对球的正确映射的研究已经与数论、组合学、线性代数产生了意想不到的联系,并且在计算方面可能会带来符号和数值计算方面的进步。 这项研究中应用的许多方法对于研究生甚至高年级本科生来说都很容易掌握。 因此,该项目不仅将增进对复杂分析这一新领域的理解,而且可能有助于年轻研究人员的参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiri Lebl其他文献

Jiri Lebl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiri Lebl', 18)}}的其他基金

Complexity in Cauchy-Riemann Geometry
柯西-黎曼几何的复杂性
  • 批准号:
    1362337
  • 财政年份:
    2014
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
  • 批准号:
    2404023
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Standard Grant
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/S034420/2
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Fellowship
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/Y00390X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Fellowship
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Continuing Grant
Low-complexity配列の相分離液滴の分光学的解析法の開発
低复杂度排列相分离液滴光谱分析方法的发展
  • 批准号:
    23K23857
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Building Molecular Complexity Through Enzyme-Enabled Synthesis
通过酶合成构建分子复杂性
  • 批准号:
    DE240100502
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Discovery Early Career Researcher Award
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分​​学习
  • 批准号:
    DP240102050
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Discovery Projects
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
  • 批准号:
    MR/X023028/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Fellowship
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
  • 批准号:
    2339711
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Continuing Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    BB/Y008898/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.99万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了