Two-dimensional conformal field theories and their moduli space.
二维共形场论及其模空间。
基本信息
- 批准号:0901237
- 负责人:
- 金额:$ 27.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).In the last few years, Huang has proved the Verlinde conjecture and the Verlinde formula which play a fundamental role in Conformal Field Theory and related subjects and has proved the rigidity and modularity of the ribbon category of modules for vertex operator algebras satisfying certain natural conditions. He has investigated other problems in the mathematical foundation of two-dimensional conformal field theory. His interest is in tackling some of the still-unsolved hard problems in that field. The proposed research of Huang is expected to give results on general orbifold conformal field theories and higher-genus conformal field theories, a mathematical understanding of the connection between certain orbifold conformal field theories and certain Calabi-Yau manifolds, a solid foundation to a mathematical theory of deformations of conformal field theories, a better understanding of the geometry of Calabi-Yau manifolds related to conformal field theories and new insight into the mathematics underlying problems in physics. Broader impacts arise from the PI's teaching, mentoring, advising, lecturing, expository writing, conference-organizing, seminar-organizing, volume-editing and other such activities. In particular, he will continue to devote a large amount of time to train REU undergraduate students and Ph.D. students. Huang will continue to encourage the participation of women and members of underrepresented minority groups in their areas of study. Besides studying the theoretical aspects of two-dimensional conformal field theory, Huang is also interested in finding applications of his results and approaches to problems in physics, such as problems related to quantum computing and string theory.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。近年来,Huang证明了在共形场论及相关学科中起基础作用的Verlinde猜想和Verlinde公式,并证明了满足一定自然条件的顶点算子代数的带状模类的刚性和模性。他还研究了二维共形场论的数学基础中的其他问题。他的兴趣在于解决该领域一些尚未解决的难题。黄教授的研究有望在一般的轨道共形场论和高格共形场论方面取得成果,对某些轨道共形场论和某些Calabi-Yau流形之间关系的数学理解,为共形场论变形的数学理论奠定坚实的基础。更好地理解与共形场理论相关的Calabi-Yau流形的几何形状,并对物理学中潜在的数学问题有了新的认识。更广泛的影响来自PI的教学、指导、咨询、演讲、说明文写作、会议组织、研讨会组织、卷编辑和其他此类活动。特别是,他将继续投入大量的时间来培养REU的本科生和博士生。黄教授将继续鼓励女性和少数族裔成员参与他们的研究领域。除了研究二维共形场论的理论方面,黄还对寻找他的结果和方法在物理问题上的应用感兴趣,例如与量子计算和弦理论相关的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi-Zhi Huang其他文献
Virasoro vertex operator algebras, the (nonmeromorphic) operator product expansion and the tensor product theory
- DOI:
10.1006/jabr.1996.0168 - 发表时间:
1995-05 - 期刊:
- 影响因子:0.9
- 作者:
Yi-Zhi Huang - 通讯作者:
Yi-Zhi Huang
A theory of tensor products for module categories for a vertex operator algebra, IV
- DOI:
10.1016/0022-4049(95)00050-7 - 发表时间:
1995-05 - 期刊:
- 影响因子:0
- 作者:
Yi-Zhi Huang - 通讯作者:
Yi-Zhi Huang
First and Second Cohomologies of Grading-Restricted Vertex Algebras
- DOI:
10.1007/s00220-014-1946-8 - 发表时间:
2014-03-02 - 期刊:
- 影响因子:2.600
- 作者:
Yi-Zhi Huang - 通讯作者:
Yi-Zhi Huang
Associative algebras and the representation theory of grading-restricted vertex algebras
- DOI:
10.1142/s0219199723500360 - 发表时间:
2020-09 - 期刊:
- 影响因子:1.6
- 作者:
Yi-Zhi Huang - 通讯作者:
Yi-Zhi Huang
Differential equations, duality and modular invariance
- DOI:
10.1142/s021919970500191x - 发表时间:
2003-03 - 期刊:
- 影响因子:1.6
- 作者:
Yi-Zhi Huang - 通讯作者:
Yi-Zhi Huang
Yi-Zhi Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi-Zhi Huang', 18)}}的其他基金
International workshop "Conformal field theories and tensor categories".
国际研讨会“共形场论和张量类别”。
- 批准号:
1105279 - 财政年份:2011
- 资助金额:
$ 27.55万 - 项目类别:
Standard Grant
US-Austria Workshop: Tensor Categories in Mathematics and Physics
美国-奥地利研讨会:数学和物理中的张量类别
- 批准号:
0406198 - 财政年份:2004
- 资助金额:
$ 27.55万 - 项目类别:
Standard Grant
Mathematical Sciences: Vertex Operators Algebras, Conformal Field Theories, and Geometry
数学科学:顶点算子代数、共形场论和几何
- 批准号:
9622961 - 财政年份:1996
- 资助金额:
$ 27.55万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Structure of Conformal Field Theory
数学科学:共形场论的几何结构
- 批准号:
9596101 - 财政年份:1994
- 资助金额:
$ 27.55万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Structure of Conformal Field Theory
数学科学:共形场论的几何结构
- 批准号:
9301020 - 财政年份:1993
- 资助金额:
$ 27.55万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Structure of Conformal Field Theories
数学科学:共形场论的几何结构
- 批准号:
9104519 - 财政年份:1991
- 资助金额:
$ 27.55万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
- 批准号:81150011
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
肝脏管道系统数字化及三维成像的研究
- 批准号:30470493
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:
RGPIN-2018-04122 - 财政年份:2022
- 资助金额:
$ 27.55万 - 项目类别:
Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:
RGPIN-2018-04122 - 财政年份:2021
- 资助金额:
$ 27.55万 - 项目类别:
Discovery Grants Program - Individual
Topological and conformal interfaces in two-dimensional quantum field theories
二维量子场论中的拓扑和共形界面
- 批准号:
2616598 - 财政年份:2021
- 资助金额:
$ 27.55万 - 项目类别:
Studentship
CAREER: Liouville Quantum Gravity, Two-Dimensional Random Geometry, and Conformal Field Theory
职业:刘维尔量子引力、二维随机几何和共形场论
- 批准号:
2046514 - 财政年份:2021
- 资助金额:
$ 27.55万 - 项目类别:
Continuing Grant
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:
RGPIN-2018-04122 - 财政年份:2020
- 资助金额:
$ 27.55万 - 项目类别:
Discovery Grants Program - Individual
New Dualities in two dimensional conformal field theories
二维共形场论中的新对偶性
- 批准号:
554021-2020 - 财政年份:2020
- 资助金额:
$ 27.55万 - 项目类别:
University Undergraduate Student Research Awards
Four dimensional Conformal field theories (CFT4) from two dimensional topological field theories (TFT2) and polynomial rings.
来自二维拓扑场论 (TFT2) 和多项式环的四维共形场论 (CFT4)。
- 批准号:
2262859 - 财政年份:2019
- 资助金额:
$ 27.55万 - 项目类别:
Studentship
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:
RGPIN-2018-04122 - 财政年份:2019
- 资助金额:
$ 27.55万 - 项目类别:
Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:
RGPIN-2018-04122 - 财政年份:2018
- 资助金额:
$ 27.55万 - 项目类别:
Discovery Grants Program - Individual
Universality and conformal invariance of certain two dimensional statistical physics models
某些二维统计物理模型的普遍性和共形不变性
- 批准号:
DGECR-2018-00394 - 财政年份:2018
- 资助金额:
$ 27.55万 - 项目类别:
Discovery Launch Supplement