Extremal hypergraphs, codes, designs, and combinatorial geometry
极值超图、代码、设计和组合几何
基本信息
- 批准号:0901276
- 负责人:
- 金额:$ 51.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-15 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPrincipal Investigator: Furedi, Zoltan Proposal Number: DMS - 0901276 Institution: University of Illinois at Urbana-ChampaignTitle: Extremal hypergraphs, codes, designs, and combinatorial geometryThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The PI has studied how local properties affect the global parameters of various combinatorial structures. This is a very general framework of the so-called Turan number problems. The PI plans to continue his work on this topic and investigates four different aspects: 1. To study the Turan numbers of triple systems and multigraphs, as a tool to achieve a general theory for r-graphs, e.g., to prove Kalai's conjecture. 2. To investigate natural generalizations of Turan's question, like the number of substructures, stability questions, and consider other host-graphs, like the hypercube. 3. To study general coding theory, design-theory, combinatorial geometry problems, geometric and algebraic graph representations, which lead to hypergraph intersection and other Turan type problems, e.g., superimposed and covering codes, and the completion problem of partial G-designs. 4. To find geometric/algebraic graph representations where Turan numbers naturally emerge, e.g., Prague-dimension, intersection and geometric representations of graphs. The subject of this proposal is the effect of local properties on global parameters of combinatorial structures, in other words, extremal combinatorics. The PI continue to find applications in theoretical computer science, coding theory and discrete geometry. Combinatorics deals with finite but very large problems arising from computer science, data mining, and communications. Extremal combinatorics applies a broad array of tools and results from other fields of mathematics, on the other hand, it has a number of interesting applications in in geometry, integer programming, computer science, coding theory, dimension theory of partially ordered sets, and cryptography. Combinatorics is the theoretical basis of the economical, fast and reliable algorithms to store and reach data structures. Applications of extremal combinatorics and coding theory in computer science, computer graphics and in communication theory are indispensable.
主要研究者:Furedi,Zoltan 提案编号:DMS - 0901276机构:伊利诺伊大学厄巴纳-香槟分校标题:极值超图,代码,设计和组合几何这个奖项是根据2009年美国复苏和再投资法案(公法111-5)资助。 PI研究了局部性质如何影响各种组合结构的全局参数。这是所谓的图兰数问题的一个非常一般的框架。PI计划继续他在这个主题上的工作,并调查四个不同的方面:1。研究三元系和多重图的Turan数,作为获得r-图的一般理论的工具,例如,来证明卡莱的猜想 2.研究Turan问题的自然推广,如子结构的数量,稳定性问题,并考虑其他宿主图,如超立方体。 3.研究一般编码理论,设计理论,组合几何问题,几何和代数图表示,导致超图相交和其他图兰类型问题,例如,重叠码和覆盖码以及部分G-设计的完备化问题。 4.要找到自然出现Turan数的几何/代数图形表示,例如,图的维数、交与几何表示。 这个建议的主题是局部性质对组合结构全局参数的影响,换句话说,极值组合。PI继续在理论计算机科学、编码理论和离散几何中找到应用。组合数学处理计算机科学、数据挖掘和通信中产生的有限但非常大的问题。极值组合学应用了广泛的工具和其他数学领域的结果,另一方面,它在几何,整数规划,计算机科学,编码理论,偏序集的维数理论和密码学中有许多有趣的应用。组合数学是经济、快速、可靠的数据结构存取算法的理论基础。极值组合学和编码理论在计算机科学、计算机图形学和通信理论中的应用是必不可少的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zoltan Furedi其他文献
Covering a Triangle with Positive and Negative Homothetic Copies
- DOI:
10.1007/s00454-007-1338-3 - 发表时间:
2007-12-11 - 期刊:
- 影响因子:0.600
- 作者:
Zoltan Furedi - 通讯作者:
Zoltan Furedi
Zoltan Furedi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zoltan Furedi', 18)}}的其他基金
Extremal graphs, hereditary and random structures
极值图、遗传和随机结构
- 批准号:
0600303 - 财政年份:2006
- 资助金额:
$ 51.86万 - 项目类别:
Continuing Grant
Algebraic and Geometric Representations of Combinatorial Structures
组合结构的代数和几何表示
- 批准号:
9970270 - 财政年份:1999
- 资助金额:
$ 51.86万 - 项目类别:
Continuing Grant
相似海外基金
AF: SMALL: Submodular Functions and Hypergraphs: Partitioning and Connectivity
AF:SMALL:子模函数和超图:分区和连接
- 批准号:
2402667 - 财政年份:2024
- 资助金额:
$ 51.86万 - 项目类别:
Standard Grant
Collaborative Research: Extremal and Ramsey Problems for Graphs and Hypergraphs
协作研究:图和超图的极值问题和 Ramsey 问题
- 批准号:
2300347 - 财政年份:2023
- 资助金额:
$ 51.86万 - 项目类别:
Continuing Grant
Collaborative Research: Extremal and Ramsey Problems for Graphs and Hypergraphs
协作研究:图和超图的极值问题和 Ramsey 问题
- 批准号:
2300346 - 财政年份:2023
- 资助金额:
$ 51.86万 - 项目类别:
Continuing Grant
Modelling and Mining Complex Networks as Hypergraphs
将复杂网络建模和挖掘为超图
- 批准号:
577565-2022 - 财政年份:2022
- 资助金额:
$ 51.86万 - 项目类别:
Alliance Grants
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
- 批准号:
RGPIN-2019-06429 - 财政年份:2022
- 资助金额:
$ 51.86万 - 项目类别:
Discovery Grants Program - Individual
Cycle decompositions of graphs and eulerian properties of hypergraphs
图的循环分解和超图的欧拉性质
- 批准号:
RGPIN-2022-02994 - 财政年份:2022
- 资助金额:
$ 51.86万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial structures on packing, covering, and configulation on hypergraphs
超图上的打包、覆盖和配置的组合结构
- 批准号:
22K03398 - 财政年份:2022
- 资助金额:
$ 51.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Existence of Specific Paths, Cycles, and Colorings in Graphs and Hypergraphs
图和超图中特定路径、循环和着色的存在性
- 批准号:
2153507 - 财政年份:2022
- 资助金额:
$ 51.86万 - 项目类别:
Standard Grant
Substructures in large graphs and hypergraphs
大图和超图的子结构
- 批准号:
EP/V038168/1 - 财政年份:2022
- 资助金额:
$ 51.86万 - 项目类别:
Fellowship














{{item.name}}会员




