Existence of Specific Paths, Cycles, and Colorings in Graphs and Hypergraphs

图和超图中特定路径、循环和着色的存在性

基本信息

项目摘要

Extremal problems on graphs and hypergraphs naturally arise in different areas of science, such as information theory, electrical engineering, statistical physics, and molecular biology. This is a large fast developing area with deep ideas and powerful tools. The area also is closely related to other parts of mathematics, computer science and operation research. We consider two types of basic extremal problems on graphs and hypergraphs: on the existence of paths and cycles of a given kind and on special partitions of the set of vertices or edges of a (hyper)graph (mainly involving its cycle structure). Since cycles and paths are very natural substructures of graphs and hypergraphs, understanding problems on their existence will help in resolving other extremal problems. The PI plans to involve into work on the problems of the grant several graduate students and very recent graduates of the University of Illinois. The research guidance for them contributes to their professional development and reputation.The goal of this project is to study a series of extremal problems related to paths and cycles in graphs and hypergraphs and to colorings, especially when the answers depend on the cycle structure. In fact, in most coloring problems the cycle structure is important. In a number of problems we will consider (hyper)graphs with restrictions on degree structure. Examples are: (hyper)graphs with bounded maximum degree, or with bounded maximum average degree, or with given degeneracy, or k-regular, or with high minimum degree. Among important topics are Turan-type problems on cycles and paths in graphs and ordered graphs, problems on different kinds of cycles and paths in hypergraphs, extremal problems on different types of coloring, Ramsey-type problems for cycles and paths, DP-colorings, list coloring, improper colorings, graph reconstruction problems when the known subgraphs have less than n-1 vertices, saturation problems for hypergraphs. Work in these directions will exploit and hopefully develop recent advances in the field including the results and ideas of the PI and his co-authors, in particular, graduate students working with him.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图和超图的极值问题自然出现在不同的科学领域,如信息论、电子工程、统计物理和分子生物学。这是一个快速发展的大领域,有着深刻的思想和强大的工具。该领域也与数学、计算机科学和运筹学的其他部分密切相关。我们考虑了图和超图上的两类基本极值问题:给定类型的路径和环的存在性问题和(超)图的顶点集或边集的特殊划分问题(主要涉及其环结构)。由于循环和路径是图和超图非常自然的子结构,理解它们存在的问题将有助于解决其他极端问题。PI计划让伊利诺伊大学的几名研究生和刚毕业的学生参与到研究项目中来。对他们的研究指导有助于他们的专业发展和声誉。本课题的目标是研究一系列与图和超图中的路径和循环以及着色有关的极值问题,特别是当答案依赖于循环结构时。事实上,在大多数着色问题中,循环结构是重要的。在许多问题中,我们将考虑对度结构有限制的(超)图。例子有:有界最大度图,有界最大平均度图,给定简并度图,k规则图,高最小度图。其中重要的主题是图和有序图的环和路径上的turan型问题,超图中不同类型的环和路径上的问题,不同类型染色上的极值问题,环和路径上的ramsey型问题,dp染色,列表染色,不正当染色,已知子图的顶点数小于n-1时的图重构问题,超图的饱和问题。这些方向的工作将利用并有望发展该领域的最新进展,包括PI及其合著者的结果和想法,特别是与他一起工作的研究生。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Minimum degree ensuring that a hypergraph is hamiltonian-connected
确保超图是哈密顿连通的最小度
  • DOI:
    10.1016/j.ejc.2023.103782
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Kostochka, Alexandr;Luo, Ruth;McCourt, Grace
  • 通讯作者:
    McCourt, Grace
Towards the Small Quasi-Kernel Conjecture
迈向小准核猜想
Sparse critical graphs for defective DP-colorings
有缺陷的 DP 着色的稀疏临界图
  • DOI:
    10.1016/j.disc.2024.113899
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Kostochka, Alexandr;Xu, Jingwei
  • 通讯作者:
    Xu, Jingwei
Saturation for the 3-uniform loose 3-cycle
3 均匀松散 3 循环的饱和度
  • DOI:
    10.1016/j.disc.2023.113504
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    English, Sean;Kostochka, Alexandr;Zirlin, Dara
  • 通讯作者:
    Zirlin, Dara
$3$-reconstructibility of rooted trees
  • DOI:
    10.4310/pamq.2022.v18.n6.a7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    A. Kostochka;M. Nahvi;D. West;Dara Zirlin
  • 通讯作者:
    A. Kostochka;M. Nahvi;D. West;Dara Zirlin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandr Kostochka其他文献

Dirac-type theorems for long Berge cycles in hypergraphs
超图中长贝尔格循环的狄拉克型定理
Hadwiger Number and the Cartesian Product of Graphs
  • DOI:
    10.1007/s00373-008-0795-7
  • 发表时间:
    2008-09-13
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    L. Sunil Chandran;Alexandr Kostochka;J. Krishnam Raju
  • 通讯作者:
    J. Krishnam Raju
An Ore-type analogue of the Sauer-Spencer Theorem
  • DOI:
    10.1007/s00373-007-0732-1
  • 发表时间:
    2007-08-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Alexandr Kostochka;Gexin Yu
  • 通讯作者:
    Gexin Yu
On 2-Detour Subgraphs of the Hypercube
  • DOI:
    10.1007/s00373-008-0790-z
  • 发表时间:
    2008-09-13
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    József Balogh;Alexandr Kostochka
  • 通讯作者:
    Alexandr Kostochka
Decomposing Graphs into Long Paths

Alexandr Kostochka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandr Kostochka', 18)}}的其他基金

Extremal Problems on Graphs Related to Colorings and Cycle Structure
与着色和循环结构相关的图的极值问题
  • 批准号:
    1600592
  • 财政年份:
    2016
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Continuing Grant
Coloring-related problems for graphs and hypergraphs with degree restrictions
具有度数限制的图和超图的着色相关问题
  • 批准号:
    1266016
  • 财政年份:
    2013
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Continuing Grant
Packings and contractions of graphs and hypergraphs
图和超图的打包和收缩
  • 批准号:
    0965587
  • 财政年份:
    2010
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Continuing Grant
Collaborative research on degree conditions for packing and covering problems on graphs
图上包装覆盖问题度条件的协同研究
  • 批准号:
    0650784
  • 财政年份:
    2007
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Continuing Grant
Extremal Combinatorics at Illinois (EXCILL)
伊利诺伊州极值组合学 (EXCILL)
  • 批准号:
    0608413
  • 财政年份:
    2006
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Standard Grant
Extremal problems on packing sparse graphs and hypergraphs
稀疏图和超图打包的极值问题
  • 批准号:
    0400498
  • 财政年份:
    2004
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Standard Grant
Colorings and List Colorings: Contrasts and Similarities
着色和列表着色:对比和相似之处
  • 批准号:
    0099608
  • 财政年份:
    2001
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Continuing Grant

相似国自然基金

花胶鱼类物种Species-specific PCR和Multiplex PCR鉴定体系研究
  • 批准号:
    31902373
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Sex-specific fitness landscapes in the evolution of egg-laying vs live-birth
产卵与活产进化中的性别特异性适应性景观
  • 批准号:
    NE/Y001672/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Research Grant
Screen4SpLDs - Development of an Automated Pre-Screening Tool for Specific Learning Disabilities in Children.
Screen4SpLDs - 开发针对儿童特定学习障碍的自动预筛查工具。
  • 批准号:
    EP/Y002121/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Research Grant
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
  • 批准号:
    2337351
  • 财政年份:
    2024
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
  • 批准号:
    2305325
  • 财政年份:
    2024
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Fellowship Award
A new vascular regenerative therapy for myocardial ischemia using intergin-specific circulating monocytes
使用intergin特异性循环单核细胞治疗心肌缺血的新血管再生疗法
  • 批准号:
    24K19425
  • 财政年份:
    2024
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Chemically specific polymer models with field-theoretic simulations
职业:具有场论模拟的化学特定聚合物模型
  • 批准号:
    2337554
  • 财政年份:
    2024
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Continuing Grant
CAREER: Structure-Specific Fluorescence Spectroscopy to Dissect Conformational Heterogeneity in Macromolecules
职业:结构特异性荧光光谱分析大分子的构象异质性
  • 批准号:
    2338251
  • 财政年份:
    2024
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Continuing Grant
MRI-based, patient-specific 3D bone imaging for orthopaedic surgery planning
基于 MRI 的患者特异性 3D 骨成像,用于骨科手术规划
  • 批准号:
    10106117
  • 财政年份:
    2024
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Launchpad
A computational weight of evidence platform to understand critical fish specific biology mediating toxicologically relevant responses to stress
证据平台的计算权重,用于了解介导毒理学相关应激反应的关键鱼类特定生物学
  • 批准号:
    BB/Y512564/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Training Grant
Control of human neurodevelopment by a group of hominoid-specific transposons
一组人科动物特异性转座子控制人类神经发育
  • 批准号:
    BB/Y000854/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.55万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了