Reaction, Diffusion, and Fluid Flow
反应、扩散和流体流动
基本信息
- 批准号:0901363
- 负责人:
- 金额:$ 14.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-15 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project focuses on analytical study of models of reaction processes taking place in fluid flow. These models involve nonlinear partial differential equations such as reaction-diffusion equations, which may be coupled to the Navier-Stokes equations of fluid dynamics. The proposed research aims at improving our understanding of the effects of fluid motion on combustion and has two main goals. The first is a continuation of current work on passive combustion in periodic media as well as development of new techniques applicable to general disordered media. The questions to be addressed include the effect of geometric properties of periodic flows on speed-up of propagation of reaction as well as the phenomenon of quenching. We will also investigate propagation of reaction in disordered media, in particular, the existence of traveling front solutions and asymptotic approach of arbitrary solutions to these special ones. The second main goal is the study of active combustion with direct feedback of reaction on the fluid motion via the buoyancy force. Models incorporating such feedback, particularly relevant in highly turbulent combustion regimes, involve reaction-diffusion equations coupled to fluid dynamics equations and are inherently very complex. We will focus our efforts on the existence and stability of traveling fronts, bounds on the speed of propagation of reaction, and gravity-induced mixing. In addition, we intend to apply the developed techniques to the study of phase transitions in a related model of liquid suspensions. The problems addressed by the project involve rich and subtle mathematics but also have an interdisciplinary character. Reaction processes such as burning in internal combustion engines, nuclear reactions in stars, forest fires, and production of ozone in the atmosphere are ubiquitous in nature, science, and engineering. Motion of the underlying liquid or gaseous medium often plays a crucial role by either speeding up reaction or quenching it. The proposed research aims at a better mathematical understanding of the effects of various properties of the resulting turbulent flows on reactive processes. It is relevant to branches of science such as astrophysics, biology, environmental science, and chemical engineering, and may provide useful qualitative insights in real life phenomena. The principal investigator also plans to teach an undergraduate-level course as part of the Research Experience for Undergraduates summer program at the University of Chicago, as well as a specialized graduate-level course in reaction-diffusion equations.
该项目侧重于流体流动中发生的反应过程模型的分析研究。这些模型涉及非线性偏微分方程,如反应-扩散方程,它可能与流体动力学的Navier-Stokes方程耦合。提出的研究旨在提高我们对流体运动对燃烧的影响的理解,并有两个主要目标。第一个是继续目前在周期性介质中的被动燃烧工作,以及开发适用于一般无序介质的新技术。要解决的问题包括周期性流动的几何性质对反应传播加速的影响以及淬火现象。我们还将研究反应在无序介质中的传播,特别是行进前解的存在性和这些特殊解的任意解的渐近逼近。第二个主要目标是研究通过浮力直接反馈反应对流体运动的主动燃烧。包含这种反馈的模型,特别是与高湍流燃烧状态相关的模型,涉及到与流体动力学方程耦合的反应-扩散方程,本质上非常复杂。我们将集中精力研究行进锋的存在性和稳定性,反应传播速度的界限,以及重力诱导的混合。此外,我们打算将开发的技术应用于研究液相悬浮液的相关模型中的相变。该项目解决的问题涉及丰富而微妙的数学,但也具有跨学科的特点。诸如内燃机燃烧、恒星核反应、森林火灾和大气中臭氧的产生等反应过程在自然界、科学和工程中无处不在。下面的液体或气体介质的运动往往起着至关重要的作用,要么加速反应,要么使反应熄灭。提出的研究旨在更好地从数学上理解所产生的湍流的各种性质对反应过程的影响。它与诸如天体物理学、生物学、环境科学和化学工程等科学分支相关,并可能为现实生活中的现象提供有用的定性见解。作为芝加哥大学本科生暑期项目研究经验的一部分,首席研究员还计划教授一门本科水平的课程,以及一门专门的研究生水平的反应扩散方程课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrej Zlatos其他文献
The 2D Muskat Problem I: Local Regularity on the Half-plane, Plane, and Strips
二维 Muskat 问题 I:半平面、平面和条带上的局部正则性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrej Zlatos - 通讯作者:
Andrej Zlatos
The 2D Muskat Problem II: Stable Regime Small Data Singularity on the Half-plane
二维 Muskat 问题 II:半平面上的稳定状态小数据奇点
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrej Zlatos - 通讯作者:
Andrej Zlatos
Andrej Zlatos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrej Zlatos', 18)}}的其他基金
Long Time Dynamics in Combustion, Mixing, and Fluids Models
燃烧、混合和流体模型中的长时间动力学
- 批准号:
1900943 - 财政年份:2019
- 资助金额:
$ 14.61万 - 项目类别:
Standard Grant
CAREER: Reactive Processes and Turbulent Flows
职业:反应过程和湍流
- 批准号:
1656269 - 财政年份:2016
- 资助金额:
$ 14.61万 - 项目类别:
Continuing Grant
Reactive Processes, Mixing, and Fluid Dynamics
反应过程、混合和流体动力学
- 批准号:
1600641 - 财政年份:2016
- 资助金额:
$ 14.61万 - 项目类别:
Continuing Grant
Reactive Processes, Mixing, and Fluid Dynamics
反应过程、混合和流体动力学
- 批准号:
1652284 - 财政年份:2016
- 资助金额:
$ 14.61万 - 项目类别:
Continuing Grant
CAREER: Reactive Processes and Turbulent Flows
职业:反应过程和湍流
- 批准号:
1056327 - 财政年份:2011
- 资助金额:
$ 14.61万 - 项目类别:
Continuing Grant
Reaction and Diffusion in the Presence of Fluid Flow
流体流动时的反应和扩散
- 批准号:
0632442 - 财政年份:2006
- 资助金额:
$ 14.61万 - 项目类别:
Standard Grant
相似国自然基金
带drift-diffusion项的抛物型偏微分方程组的能控性与能稳性
- 批准号:61573012
- 批准年份:2015
- 资助金额:49.0 万元
- 项目类别:面上项目
Levy过程驱动的随机Fast-Diffusion方程的Harnack不等式及其应用
- 批准号:11126079
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Map Paravascular Fluid Dynamic Signatures of Key Aging and AD Processes Using Dynamics Diffusion-Weighted Imaging
使用动力学扩散加权成像绘制关键衰老和 AD 过程的血管旁流体动态特征
- 批准号:
10739365 - 财政年份:2023
- 资助金额:
$ 14.61万 - 项目类别:
Three-Dimensional Diffusion Measurement near the Fluid-Solid Interfacial Boundary based on an Advanced Particle Tracking using Total Internal Reflection
基于使用全内反射的高级粒子跟踪的流固界面边界附近的三维扩散测量
- 批准号:
23K03664 - 财政年份:2023
- 资助金额:
$ 14.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Historical study on the diffusion process of computational scientific methods with the case of fluid dynamics in post-war Japan
以战后日本流体力学为例的计算科学方法传播过程的历史研究
- 批准号:
23H00598 - 财政年份:2023
- 资助金额:
$ 14.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of mixing and diffusion mechanisms with phase-separation of multi-component fluid under cryogenic high-pressure conditions
低温高压条件下多组分流体相分离的混合和扩散机制研究
- 批准号:
22H01686 - 财政年份:2022
- 资助金额:
$ 14.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Turbulence transport in a density stratified fluid generated by multiple scalars: mechanism of differential diffusion and quantitative evaluation
多标量产生的密度分层流体中的湍流传递:微分扩散机制和定量评估
- 批准号:
21K03875 - 财政年份:2021
- 资助金额:
$ 14.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Measurement and correlation of viscosity and diffusion coefficient for dense fluid mixtures
稠密流体混合物的粘度和扩散系数的测量和关联
- 批准号:
21K04756 - 财政年份:2021
- 资助金额:
$ 14.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of Mixing, Diffusion, and Combustion Mechanism on Multi-species Fluid under Cryogenic High-Pressure Conditions
低温高压条件下多组分流体的混合、扩散和燃烧机理研究
- 批准号:
19H02349 - 财政年份:2019
- 资助金额:
$ 14.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a novel diffusion magnetic resonance imaging for detecting cerebral interstitial fluid flow and investigation of human glymphatic system
开发一种新型扩散磁共振成像来检测脑间质液流动并研究人体类淋巴系统
- 批准号:
19K12767 - 财政年份:2019
- 资助金额:
$ 14.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis of diffusion and diffusion wave property for the solutions to the system of the viscous fluid flow
粘性流体流动系统解的扩散和扩散波性质的数学分析
- 批准号:
18K03368 - 财政年份:2018
- 资助金额:
$ 14.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamism of fluid pressure in subduction zones revealed by tracer-diffusion experiments on reaction zones
反应区示踪扩散实验揭示俯冲带流体压力动态
- 批准号:
18K13628 - 财政年份:2018
- 资助金额:
$ 14.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists