Long Time Dynamics in Combustion, Mixing, and Fluids Models
燃烧、混合和流体模型中的长时间动力学
基本信息
- 批准号:1900943
- 负责人:
- 金额:$ 21.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this project is a better understanding of mathematical models of several important real world phenomena, including propagation of reactive processes, turbulent motion of fluids, and mixing of substances by such motion. Reactive processes (e.g., forest fires) frequently occur in a patchwork of different environments (trees, brush, grass), through which the process propagates at different rates. The theory of homogenization aims to better understand how the dynamics of the process over large scales (long distances and times) depends on smaller scale variations in the environment. The main goal of this part of the project is to demonstrate that thanks to averaging over large regions, the long term behavior of the process can be predicted with a large degree of confidence without the need for overly detailed information about the composition of the environment. Mixing via fluid motion is crucial in the production of materials such as alloys, as well as in enhancement of processes such as chemical reactions. Quantifying mixing efficiency of flows and identifying those that stand out in this respect is therefore of great importance. The PI recently constructed universal mixers, flows that are particularly efficient in mixing. These have a relatively simple structure but may be too irregular for practical applications. The main goal of this part of the project is to identify more regular universal mixers, as well as to study how such fast mixing affects diffusive processes (e.g., heat transport). Even without considering its effects on mixing of substances, our understanding of the motion of fluids is still far from satisfactory. The study of onset of turbulence and the associated creation of small scale structures in fluids is important in mathematics as well as in physics and engineering, and while it has seen great progress in recent years, many fundamental questions remain unresolved. In this part of the project, the PI proposes to study how fast the development of turbulent structures in fluids can be and how severe this turbulence can become, both in the bulk of the fluid and in the vicinity of regular as well as irregular boundaries (walls of the fluid container).Physical processes such as combustion, mixing, and fluid turbulence, whose study motivates this project, are modeled by linear and nonlinear partial differential equations, including reaction-diffusion equations, transport equations, drift-diffusion equations, and equations of fluid dynamics. The primary focus of this project, which consists of three parts, is the study of long term dynamics of the solutions of these equations as well as their possible formation of singularities in finite time. The aim of the first part of the project is the understanding of large scale behavior of reactive processes spreading through heterogeneous media, including obtaining a satisfactory homogenization theory for these models in multi-dimensional random media. The aim of the second part of the project is the study of mixing efficiency of flows and the search for sufficiently regular universal mixers, flows that are highly efficient in mixing of substances advected by them regardless of the initial configuration of the latter. Enhancement of diffusion in drift-diffusion equations via flow-induced mixing will also be studied. The aim of the third part of the project is the study of turbulence in two-dimensional Euler and related equations of fluid dynamics, including rapid growth of gradients of solutions in the bulk of the fluid and possible formation of finite time singularities in more singular models. The question of well-posedness of Euler equations in planar domains with irregular boundaries will also be addressed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是更好地理解几个重要的真实的世界现象的数学模型,包括反应过程的传播,流体的湍流运动,以及通过这种运动混合物质。 反应过程(例如,森林火灾)经常发生在不同的环境(树木、灌木丛、草地)中,通过这些环境,火灾过程以不同的速度传播。 均匀化理论旨在更好地理解大尺度(长距离和时间)过程的动态如何取决于环境中较小尺度的变化。 该项目这一部分的主要目标是证明,由于在大区域上进行平均,可以在很大程度上预测该过程的长期行为,而不需要有关环境组成的过于详细的信息。 通过流体运动进行混合在合金等材料的生产以及化学反应等过程的增强中至关重要。 因此,量化流动的混合效率并确定在这方面突出的混合效率非常重要。 PI最近建造了通用混合器,在混合中特别有效的流动。 这些具有相对简单的结构,但对于实际应用来说可能太不规则。 该项目这一部分的主要目标是确定更常规的通用混合器,以及研究这种快速混合如何影响扩散过程(例如,热传输)。 即使不考虑它对物质混合的影响,我们对流体运动的理解仍然远远不能令人满意。 湍流的发生和流体中小尺度结构的相关创建的研究在数学以及物理学和工程学中都很重要,虽然近年来取得了很大进展,但许多基本问题仍然没有解决。 在项目的这一部分中,PI建议研究流体中湍流结构的发展速度以及这种湍流的严重程度,无论是在大部分流体中还是在规则和不规则边界附近(流体容器的壁)。物理过程,如燃烧,混合和流体湍流,其研究激发了这个项目,的线性和非线性偏微分方程,包括反应扩散方程,输运方程,漂移扩散方程,和流体动力学方程。 这个项目的主要重点,其中包括三个部分,是这些方程的解决方案的长期动力学的研究,以及他们可能形成的奇点在有限的时间。 该项目的第一部分的目的是通过非均质介质传播的反应过程的大尺度行为的理解,包括在多维随机介质中获得这些模型的令人满意的均匀化理论。 该项目的第二部分的目的是研究流动的混合效率,并寻找足够规则的通用混合器,无论后者的初始配置如何,都能高效地混合由它们平流输送的物质。 还将研究通过流动诱导混合增强漂移扩散方程中的扩散。 该项目第三部分的目的是研究二维欧拉和相关流体动力学方程中的湍流,包括流体中大部分溶液梯度的快速增长以及在更奇异的模型中可能形成有限时间奇异性。 该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convection-induced singularity suppression in the Keller-Segel and other non-linear PDEs
- DOI:10.1090/tran/8195
- 发表时间:2019-08
- 期刊:
- 影响因子:1.3
- 作者:Gautam Iyer;Xiaoqian Xu;Andrej Zlatoš
- 通讯作者:Gautam Iyer;Xiaoqian Xu;Andrej Zlatoš
The Euler Equations in Planar Domains with Corners
- DOI:10.1007/s00205-019-01384-7
- 发表时间:2018-11
- 期刊:
- 影响因子:2.5
- 作者:C. Lacave;Andrej Zlatoš
- 通讯作者:C. Lacave;Andrej Zlatoš
Long Time Dynamics for Combustion in Random Media
随机介质中燃烧的长时间动态
- DOI:10.1007/s00205-021-01723-7
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:Zhang, Yuming Paul;Zlatoš, Andrej
- 通讯作者:Zlatoš, Andrej
Optimal Estimates on the Propagation of Reactions with Fractional Diffusion
- DOI:10.1007/s00205-023-01921-5
- 发表时间:2021-05
- 期刊:
- 影响因子:2.5
- 作者:Y. Zhang;Andrej Zlatoš
- 通讯作者:Y. Zhang;Andrej Zlatoš
Euler Equations on General Planar Domains
一般平面域上的欧拉方程
- DOI:10.1007/s40818-021-00107-0
- 发表时间:2021
- 期刊:
- 影响因子:2.8
- 作者:Han, Zonglin;Zlatoš, Andrej
- 通讯作者:Zlatoš, Andrej
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrej Zlatos其他文献
The 2D Muskat Problem I: Local Regularity on the Half-plane, Plane, and Strips
二维 Muskat 问题 I:半平面、平面和条带上的局部正则性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrej Zlatos - 通讯作者:
Andrej Zlatos
The 2D Muskat Problem II: Stable Regime Small Data Singularity on the Half-plane
二维 Muskat 问题 II:半平面上的稳定状态小数据奇点
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrej Zlatos - 通讯作者:
Andrej Zlatos
Andrej Zlatos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrej Zlatos', 18)}}的其他基金
CAREER: Reactive Processes and Turbulent Flows
职业:反应过程和湍流
- 批准号:
1656269 - 财政年份:2016
- 资助金额:
$ 21.09万 - 项目类别:
Continuing Grant
Reactive Processes, Mixing, and Fluid Dynamics
反应过程、混合和流体动力学
- 批准号:
1600641 - 财政年份:2016
- 资助金额:
$ 21.09万 - 项目类别:
Continuing Grant
Reactive Processes, Mixing, and Fluid Dynamics
反应过程、混合和流体动力学
- 批准号:
1652284 - 财政年份:2016
- 资助金额:
$ 21.09万 - 项目类别:
Continuing Grant
CAREER: Reactive Processes and Turbulent Flows
职业:反应过程和湍流
- 批准号:
1056327 - 财政年份:2011
- 资助金额:
$ 21.09万 - 项目类别:
Continuing Grant
Reaction and Diffusion in the Presence of Fluid Flow
流体流动时的反应和扩散
- 批准号:
0632442 - 财政年份:2006
- 资助金额:
$ 21.09万 - 项目类别:
Standard Grant
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
- 批准号:71671098
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
- 批准号:11504059
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
$ 21.09万 - 项目类别:
ARC Future Fellowships
Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
- 批准号:
2348908 - 财政年份:2024
- 资助金额:
$ 21.09万 - 项目类别:
Standard Grant
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
- 批准号:
2348164 - 财政年份:2024
- 资助金额:
$ 21.09万 - 项目类别:
Continuing Grant
Collaborative Research: North Atlantic Dynamics - Developing and Exploiting a Long-Term Cape Hatteras Gulf Stream Time Series
合作研究:北大西洋动力学 - 开发和利用长期哈特拉斯角湾流时间序列
- 批准号:
2123111 - 财政年份:2021
- 资助金额:
$ 21.09万 - 项目类别:
Standard Grant
Collaborative Research: North Atlantic Dynamics - Developing and Exploiting a Long-Term Cape Hatteras Gulf Stream Time Series
合作研究:北大西洋动力学 - 开发和利用长期哈特拉斯角湾流时间序列
- 批准号:
2123130 - 财政年份:2021
- 资助金额:
$ 21.09万 - 项目类别:
Standard Grant
Collaborative Research: North Atlantic Dynamics - Developing and Exploiting a Long-Term Cape Hatteras Gulf Stream Time Series
合作研究:北大西洋动力学 - 开发和利用长期哈特拉斯角湾流时间序列
- 批准号:
2123316 - 财政年份:2021
- 资助金额:
$ 21.09万 - 项目类别:
Standard Grant
Long-time dynamics of rigid bodies with a damper
带阻尼器的刚体的长期动力学
- 批准号:
563576-2021 - 财政年份:2021
- 资助金额:
$ 21.09万 - 项目类别:
University Undergraduate Student Research Awards
Long time dynamics of compressible fluids and kinetic theory with boundaries
可压缩流体的长时间动力学和边界动力学理论
- 批准号:
2009458 - 财政年份:2020
- 资助金额:
$ 21.09万 - 项目类别:
Standard Grant
Analytic aspects of long-time dynamics in general relativity
广义相对论中长期动力学的分析方面
- 批准号:
2442702 - 财政年份:2020
- 资助金额:
$ 21.09万 - 项目类别:
Studentship
CAREER: New Mechanisms for Stability, Regularity and Long Time Dynamics of Partial Differential Equations
职业:偏微分方程稳定性、正则性和长期动力学的新机制
- 批准号:
1945179 - 财政年份:2020
- 资助金额:
$ 21.09万 - 项目类别:
Continuing Grant