Calculus of Variations and Hamilton-Jacobi Equations in the Wasserstein Space

Wasserstein 空间中的变分微积分和 Hamilton-Jacobi 方程

基本信息

  • 批准号:
    0901449
  • 负责人:
  • 金额:
    $ 7.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). This project aims to study a class of dynamical systems on the Wasserstein space of probability measures corresponding to some fundamental systems of partial differential equations in fluid and quantum mechanics. A nice feature of the Wasserstein space approach is its ability to handle singular data and singular solutions. In addition, there is also a possibility of handling discrete and continuous models with the same formalism. The core of this program lies in the development of an appropriate theory for calculus of variations and Hamilton-Jacobi equations in the Wasserstein space. In this project, the principal investigator will investigate the following topics: minimizing the action functional for certain physically meaningful Lagrangians defined on the set of absolutely continuous paths in the Wasserstein space of probability measures; existence and uniqueness of viscosity solutions for Hamilton-Jacobi equations in the Wasserstein space; and homogenization of these Hamilton-Jacobi equations. Some of the most challenging aspects to these problems are the lack of local compactness in the space of probability measures and the presence of strong singularities in the Lagrangians and Hamiltonians.Calculus of variations and Hamilton-Jacobi equations play a central role in many areas of sciences including physics, economics, and engineering. In particular, they are the main object of study in classical mechanics. It is expected that the properties of solutions of the variational problems and the Hamilton-Jacobi equations to be studied in this project will provide a significant step in understanding the dynamics of some infinite-dimensional dynamical systems arising in fluid and quantum mechanics. The principal investigator's Wasserstein formalism approach is also expected to give a unifying framework in which both classical and quantum behavior of particles can be described. The proposed activity will provide a fruitful interaction with some other disciplines of theoretical and applied mathematics such as optimal mass transportation, hyperbolic systems of conservation laws, probability theory, and infinite-dimensional optimal control theory.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。本计画的目的是研究Wasserstein机率测度空间上的一类动力系统,其对应于流体力学与量子力学中的一些基本偏微分方程系统。Wasserstein空间方法的一个很好的特性是它能够处理奇异数据和奇异解。此外,也有可能处理离散和连续的模型与相同的形式主义。该计划的核心在于发展一个适当的理论变分法和哈密尔顿-雅可比方程在瓦瑟斯坦空间。在这个项目中,主要研究人员将研究以下主题:最小化在概率测度的Wasserstein空间中的绝对连续路径集合上定义的某些物理上有意义的拉格朗日函数的作用泛函; Wasserstein空间中Hamilton-Jacobi方程粘性解的存在性和唯一性;以及这些Hamilton-Jacobi方程的均匀化。这些问题中最具挑战性的方面是概率测度空间中缺乏局部紧性,以及拉格朗日算子和哈密尔顿算子中存在强奇异性。变分法和哈密尔顿-雅可比方程在物理学、经济学和工程学等许多科学领域中发挥着核心作用。特别是,它们是经典力学的主要研究对象。预计本项目所研究的变分问题和Hamilton-Jacobi方程的解的性质将为理解流体力学和量子力学中某些无限维动力系统的动力学提供重要的一步。首席研究员的瓦瑟斯坦形式主义方法也有望给出一个统一的框架,在这个框架中,粒子的经典和量子行为都可以被描述。拟议的活动将提供一个富有成效的互动与一些其他学科的理论和应用数学,如最佳质量运输,双曲系统的守恒律,概率论和无限维最优控制理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Truyen Nguyen其他文献

Optimal Transport for Measures with Noisy Tree Metric
噪声树度量的最优传输
Isolation and characterization of the human glutathione S-transferase A2 subunit gene.
人谷胱甘肽 S-转移酶 A2 亚基基因的分离和表征。
  • DOI:
    10.1016/0003-9861(92)90475-c
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Elke Röhrdanz;Truyen Nguyen;C. B. Pickett
  • 通讯作者:
    C. B. Pickett
Role of protein phosphorylation in the regulation of NF-E2-related factor 2 activity.
蛋白质磷酸化在调节 NF-E2 相关因子 2 活性中的作用。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Philip J. Sherratt;H.‐C. Huang;Truyen Nguyen;C. B. Pickett
  • 通讯作者:
    C. B. Pickett
Global $$W^{1,p}$$ estimates for solutions to the linearized Monge–Ampère equations
  • DOI:
    10.1007/s12220-016-9739-2
  • 发表时间:
    2016-09-12
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Nam Q. Le;Truyen Nguyen
  • 通讯作者:
    Truyen Nguyen
Isolation and characterization of a human glutathione S-transferase Ha1 subunit gene.
人谷胱甘肽 S-转移酶 Ha1 亚基基因的分离和表征。

Truyen Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
  • 批准号:
    31171277
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
  • 批准号:
    2303525
  • 财政年份:
    2024
  • 资助金额:
    $ 7.09万
  • 项目类别:
    Standard Grant
Perceptions, practices, autonomy levels and other variations among teachers who use AI teaching tools
使用人工智能教学工具的教师的认知、实践、自主水平和其他差异
  • 批准号:
    24K16628
  • 财政年份:
    2024
  • 资助金额:
    $ 7.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Impact of Genetic Variations on Muscle Physiology During Hominin Evolution
古人类进化过程中遗传变异对肌肉生理学的影响
  • 批准号:
    24K18206
  • 财政年份:
    2024
  • 资助金额:
    $ 7.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
  • 批准号:
    2303524
  • 财政年份:
    2024
  • 资助金额:
    $ 7.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
  • 批准号:
    2303526
  • 财政年份:
    2024
  • 资助金额:
    $ 7.09万
  • 项目类别:
    Standard Grant
Collaborative Research: CEDAR--A Whole-Atmospheric Perspective on Connections between Intra-Seasonal Variations in the Troposphere and Thermosphere
合作研究:CEDAR——对流层和热层季节内变化之间联系的整体大气视角
  • 批准号:
    2332817
  • 财政年份:
    2023
  • 资助金额:
    $ 7.09万
  • 项目类别:
    Standard Grant
Studies on the effects of volcanic outgassing and variations in solar UV intensity on Venusian climate
火山放气和太阳紫外线强度变化对金星气候影响的研究
  • 批准号:
    23KJ0201
  • 财政年份:
    2023
  • 资助金额:
    $ 7.09万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Understanding molecular variations of cattle genome by machine learning
通过机器学习了解牛基因组的分子变异
  • 批准号:
    2868882
  • 财政年份:
    2023
  • 资助金额:
    $ 7.09万
  • 项目类别:
    Studentship
Energy harvesting by indoor ambient thermal variations
通过室内环境温度变化收集能量
  • 批准号:
    23K03706
  • 财政年份:
    2023
  • 资助金额:
    $ 7.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fluid flow in the uppermost part of the incoming plate seaward of the trench: Regional variations and influence on processes around the plate interface
进入海沟的板块最上部的流体流动:区域变化及其对板块界面周围过程的影响
  • 批准号:
    23H01268
  • 财政年份:
    2023
  • 资助金额:
    $ 7.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了