Dynamics of multidimensional symbolic systems

多维符号系统的动力学

基本信息

  • 批准号:
    0901534
  • 负责人:
  • 金额:
    $ 15.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This project aims to further our understanding of higher-dimensional shifts of finite type (SFTs) and cellular automata (CA). Broadly speaking, the goal is to describe their dynamics and identify types of dynamics that cannot occur in them. In recent work the principal investigator and others have applied methods from recursion theory and topological dynamics to describe the complexity of some classical dynamical invariants associated to SFTs and CA, such as their entropy and directional dynamics (subdynamics). This project represents a continuation of that investigation. The principal investigator hopes to extend the classification of subdynamics to co-rank 1 actions (currently only co-rank 2 and higher are known) and begin a systematic study of the full dynamics, which are related to more quantitative measures of complexity drawn from computer science rather than the qualitative ones of recursion theory. He will also study the relation between SFTs, CA, and other dynamical systems, specifically addressing which actions on the Cantor set can be approximated by certain types of SFTs.The project focuses on the class of dynamical systems arising from infinite collections of discrete elements in which only "nearby" elements interact. Such models are widely used as theoretical models and in simulation in many areas of science and engineering, such as thermodynamics, fluid dynamics, the theory of quasi-crystals, information theory, and computer science, to name just a few. In that context, it is a fundamental problem to determine which dynamics such systems can represent and what their theoretical limitations are and to identify subclasses that are more amenable to study and use. Precise results in this field have come to light recently, and this project aims to continue research in this direction.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目旨在进一步加深我们对有限型(SFTs)和元胞自动机(CA)的高维移位的理解。从广义上讲,目标是描述它们的动态,并确定它们中不可能发生的动态类型。在最近的工作中,主要研究者和其他人应用递归理论和拓扑动力学的方法来描述与SFT和CA相关的一些经典动力学不变量的复杂性,例如它们的熵和方向动力学(子动力学)。该项目是该调查的继续。首席研究员希望将子动力学的分类扩展到co-rank 1行动(目前只知道co-rank 2和更高),并开始对完整动力学进行系统研究,这与从计算机科学中提取的复杂性的定量测量有关,而不是递归理论的定性测量。他还将研究SFTs,CA和其他动力系统之间的关系,特别是解决康托集上的行动可以近似由某些类型的SFTs。该项目的重点是从离散元素的无限集合中产生的动力系统类,其中只有“附近”的元素相互作用。这些模型被广泛地用作理论模型和在科学和工程的许多领域中的模拟中,例如热力学、流体动力学、准晶体理论、信息论和计算机科学,仅举几例。在这方面,一个根本问题是确定这种系统可以代表哪些动态,它们的理论局限性是什么,并确定更适合研究和使用的子类。最近在这一领域取得了精确的结果,本项目旨在继续这一方向的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Damron其他文献

Coarsening Model on $${\mathbb{Z}^{d}}$$ with Biased Zero-Energy Flips and an Exponential Large Deviation Bound for ASEP
  • DOI:
    10.1007/s00220-018-3180-2
  • 发表时间:
    2018-06-18
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Michael Damron;Leonid Petrov;David Sivakoff
  • 通讯作者:
    David Sivakoff
Sublinear variance in Euclidean first-passage percolation
  • DOI:
    10.1016/j.spa.2020.02.011
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Megan Bernstein;Michael Damron;Torin Greenwood
  • 通讯作者:
    Torin Greenwood
Zero-temperature Glauber dynamics on the 3-regular tree and the median process

Michael Damron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Damron', 18)}}的其他基金

Critical and Subcritical Growth Models
临界和亚临界增长模型
  • 批准号:
    2054559
  • 财政年份:
    2021
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant
CAREER: Distances in Random Media
职业:随机媒体中的距离
  • 批准号:
    1552267
  • 财政年份:
    2016
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Continuing Grant
Random spatial systems and ground states of short-range spin glasses
短程自旋玻璃的随机空间系统和基态
  • 批准号:
    1544358
  • 财政年份:
    2015
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant
Random spatial systems and ground states of short-range spin glasses
短程自旋玻璃的随机空间系统和基态
  • 批准号:
    1419230
  • 财政年份:
    2013
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant
Random spatial systems and ground states of short-range spin glasses
短程自旋玻璃的随机空间系统和基态
  • 批准号:
    1311791
  • 财政年份:
    2013
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0903038
  • 财政年份:
    2009
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Fellowship

相似国自然基金

含重过渡与稀土元素的多金属配合物的磁、光性质研究
  • 批准号:
    20371027
  • 批准年份:
    2003
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Liquid Crystal-Templated Sequential Infiltration Synthesis of Hybrid Organic/Inorganic Materials with Multidimensional Chiral Structures
职业:具有多维手性结构的有机/无机杂化材料的液晶模板连续渗透合成
  • 批准号:
    2337740
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Continuing Grant
Interactions between learning and non-learning plasticity in the beadlet sea anenome Actinia equina: A multidimensional reaction norm approach.
珠状海葵海葵中学习和非学习可塑性之间的相互作用:一种多维反应规范方法。
  • 批准号:
    BB/Y002474/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Research Grant
CRII: CSR: Enhancing Eventual Data Consistency in Multidimensional Scientific Computing through Lightweight In-Memory Distributed Ledger System.
CRII:CSR:通过轻量级内存分布式账本系统增强多维科学计算中的最终数据一致性。
  • 批准号:
    2348330
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Standard Grant
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
  • 批准号:
    24K20849
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
MERGE - Measuring what matters: Improving usability and accessibility of policy frameworks and indicators for multidimensional well-being through collaboration
MERGE - 衡量重要的事情:通过协作提高多维福祉政策框架和指标的可用性和可及性
  • 批准号:
    10092245
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
    EU-Funded
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
  • 批准号:
    10823917
  • 财政年份:
    2024
  • 资助金额:
    $ 15.85万
  • 项目类别:
Centrally-linked longitudinal peripheral biomarkers of AD in multi-ethnic populations
多种族人群中 AD 的中心连锁纵向外周生物标志物
  • 批准号:
    10555723
  • 财政年份:
    2023
  • 资助金额:
    $ 15.85万
  • 项目类别:
A Study on the Multidimensional Evaluation of the Effectiveness and Equalization of Psychoeducation on Complex Trauma
复杂创伤心理教育有效性及均衡性多维评价研究
  • 批准号:
    23K02998
  • 财政年份:
    2023
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New frontiers in reverse mathematics with the multidimensional perspective
多维视角逆向数学新领域
  • 批准号:
    23K03193
  • 财政年份:
    2023
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multidimensional investigation of cellular dynamics and lineage relationships in the vertebrate neural tube
脊椎动物神经管细胞动力学和谱系关系的多维研究
  • 批准号:
    EP/X031225/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.85万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了