Critical and Subcritical Growth Models
临界和亚临界增长模型
基本信息
- 批准号:2054559
- 负责人:
- 金额:$ 38.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The projects supported by this award involve studying mathematical models for random growth. Some examples include bacterial or tumor spread, and fluid flow through porous media. The research questions center on geometric aspects of optimal growth paths, as well as the overall size and speed of growth. The proposed work has connections to other areas of mathematics and physics, like the structure of disordered magnets, and satisfaction problems from computer science. The projects call for work by undergraduate and graduate students, as well as postdoctoral researchers, and provide research training opportunities for graduate students.This project contains questions in probability theory and mathematical physics, and centers on percolation-type growth models including first-passage percolation (FPP) and Bernoulli percolation. These are models that were introduced in the 1950's, but despite decades of effort by researchers, many of their fundamental properties remain elusive. The proposed projects include determination of fractal properties and scaling limits of box-crossing paths in Bernoulli percolation, the effect of random noise on passage-time asymptotics in critical FPP, and the geometry and topological structure of the growing set in sub-critical (usual) FPP. It is expected that results obtained in these studies will affect work on epidemic models, disordered spin systems, and polymer models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持的项目涉及研究随机增长的数学模型。一些实例包括细菌或肿瘤扩散,以及流体流过多孔介质。研究问题集中在最佳增长路径的几何方面,以及增长的总体规模和速度。这项工作与数学和物理学的其他领域有关,比如无序磁体的结构,以及计算机科学中的满意度问题。本课题以概率论和数学物理为题,以首次通过逾渗(FPP)和伯努利逾渗(Bernoulli percolation)等扩散型增长模型为中心,开展本科生、研究生和博士后研究人员的工作,并为研究生提供研究训练的机会。这些模型是在20世纪50年代引入的,但尽管研究人员数十年的努力,它们的许多基本性质仍然难以捉摸。提出的项目包括确定伯努利渗流中盒交叉路径的分形性质和标度极限,随机噪声对临界FPP中的时间渐近性的影响,以及亚临界(通常)FPP中生长集的几何和拓扑结构。预计在这些研究中获得的结果将影响流行病模型、无序自旋系统和聚合物模型的工作。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transitions for exceptional times in dynamical first-passage percolation
- DOI:10.1007/s00440-022-01178-1
- 发表时间:2021-08
- 期刊:
- 影响因子:2
- 作者:M. Damron;Jack Hanson;David Harper;Wai-Kit Lam
- 通讯作者:M. Damron;Jack Hanson;David Harper;Wai-Kit Lam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Damron其他文献
Coarsening Model on $${\mathbb{Z}^{d}}$$ with Biased Zero-Energy Flips and an Exponential Large Deviation Bound for ASEP
- DOI:
10.1007/s00220-018-3180-2 - 发表时间:
2018-06-18 - 期刊:
- 影响因子:2.600
- 作者:
Michael Damron;Leonid Petrov;David Sivakoff - 通讯作者:
David Sivakoff
Sublinear variance in Euclidean first-passage percolation
- DOI:
10.1016/j.spa.2020.02.011 - 发表时间:
2020-08-01 - 期刊:
- 影响因子:
- 作者:
Megan Bernstein;Michael Damron;Torin Greenwood - 通讯作者:
Torin Greenwood
Zero-temperature Glauber dynamics on the 3-regular tree and the median process
- DOI:
10.1007/s00440-020-00968-9 - 发表时间:
2020-03-12 - 期刊:
- 影响因子:1.600
- 作者:
Michael Damron;Arnab Sen - 通讯作者:
Arnab Sen
Michael Damron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Damron', 18)}}的其他基金
CAREER: Distances in Random Media
职业:随机媒体中的距离
- 批准号:
1552267 - 财政年份:2016
- 资助金额:
$ 38.11万 - 项目类别:
Continuing Grant
Random spatial systems and ground states of short-range spin glasses
短程自旋玻璃的随机空间系统和基态
- 批准号:
1544358 - 财政年份:2015
- 资助金额:
$ 38.11万 - 项目类别:
Standard Grant
Random spatial systems and ground states of short-range spin glasses
短程自旋玻璃的随机空间系统和基态
- 批准号:
1419230 - 财政年份:2013
- 资助金额:
$ 38.11万 - 项目类别:
Standard Grant
Random spatial systems and ground states of short-range spin glasses
短程自旋玻璃的随机空间系统和基态
- 批准号:
1311791 - 财政年份:2013
- 资助金额:
$ 38.11万 - 项目类别:
Standard Grant
Dynamics of multidimensional symbolic systems
多维符号系统的动力学
- 批准号:
0901534 - 财政年份:2009
- 资助金额:
$ 38.11万 - 项目类别:
Standard Grant
相似海外基金
Universality Investigation of Subcritical Turbulent Transition in Wall-bounded Shear Flow and Development of Stochastic Model for Engineering Application
壁面剪切流中亚临界湍流转变的普遍性研究及工程应用随机模型的发展
- 批准号:
22KJ2814 - 财政年份:2023
- 资助金额:
$ 38.11万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Hitching the subcritical branch of convection
连接对流的亚临界分支
- 批准号:
EP/X010937/1 - 财政年份:2023
- 资助金额:
$ 38.11万 - 项目类别:
Research Grant
A neutron generator driver source for the subcritical assembly at Ontario Tech University
安大略理工大学亚临界组件的中子发生器驱动源
- 批准号:
RTI-2023-00558 - 财政年份:2022
- 资助金额:
$ 38.11万 - 项目类别:
Research Tools and Instruments
Development of a Subcritical Test Facility
亚临界测试设施的开发
- 批准号:
RGPIN-2020-06897 - 财政年份:2022
- 资助金额:
$ 38.11万 - 项目类别:
Discovery Grants Program - Individual
Development of a Subcritical Test Facility
亚临界测试设施的开发
- 批准号:
RGPIN-2020-06897 - 财政年份:2021
- 资助金额:
$ 38.11万 - 项目类别:
Discovery Grants Program - Individual
Development of dimensionless distribution theory with solute fundamental properties for prediction of subcritical fluid separation technique
发展具有溶质基本性质的无量纲分布理论,用于预测亚临界流体分离技术
- 批准号:
21H01685 - 财政年份:2021
- 资助金额:
$ 38.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Towards Subcritical Phase Transitions in Liquid Crystalline Elastomers
液晶弹性体的亚临界相变
- 批准号:
2105369 - 财政年份:2021
- 资助金额:
$ 38.11万 - 项目类别:
Standard Grant
Global analysis for solution of dispersive partial differential equation with mass subcritical nonlinearity
具有质量次临界非线性的色散偏微分方程解的全局分析
- 批准号:
21H00993 - 财政年份:2021
- 资助金额:
$ 38.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of the ionization front propagation mechanism in the subcritical millimeter-wave discharge induced by a gyrotron
阐明回旋管引起的亚临界毫米波放电中的电离前沿传播机制
- 批准号:
20K14438 - 财政年份:2020
- 资助金额:
$ 38.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a Subcritical Test Facility
亚临界测试设施的开发
- 批准号:
RGPIN-2020-06897 - 财政年份:2020
- 资助金额:
$ 38.11万 - 项目类别:
Discovery Grants Program - Individual