Nonnegative Curvature on Lie Groups and Bundles
李群和丛上的非负曲率
基本信息
- 批准号:0902942
- 负责人:
- 金额:$ 7.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Although tremendous progress has been made towards understanding relationships between curvature and topology, the classical topic of positive/nonnegative sectional curvature still suffers from an insufficient supply of examples. The PI proposes two different methods for exploring rigidity and constructing new examples of Riemannian manifolds with nonnegative and positive sectional curvature. The first method begins with the question: classify the left-invariant metrics with nonnegative curvature on each compact Lie group. Almost all known constructions of nonnegative curvature begin with a bi-invariant metric, so answering this question would help us measure the rigidity of the known constructions, and could lead to new examples of nonnegatively curved manifolds with (at least points of) positive curvature. The second method is related to past research in which the PI developed conditions under which vector bundles admit nonnegative curvature. More precisely, if a vector bundle admits nonnegative curvature, then a fundamental differential inequality relates the three curvatures which are visible at points of its soul: the curvature of the soul, the curvature of the connection in the normal bundle of the soul, and the curvature of planes orthogonal to the soul. Conversely, if a vector bundle admits structure which strictly satisfy this inequality, then the unit sphere bundle admits positive sectional curvature. The PI proposes to use this theorem to find new examples, obstructions, and rigidity theorems for metrics with nonnegative (respectively positive) curvature on vector bundles (respectively sphere bundles).Differential Geometry provides the mathematical language for precisely describing Einstein's theory of relativity, particle physics, and high dimensional curved shapes (called manifolds). The PI's proposed work within this field involves the study of manifolds with positive curvature, which is a visually natural restriction on the way in which a manifold curves about in space. Past examples come from Lie groups, which are indispensable tools in diverse fields of mathematics, physics, cosmology, computer animation, and other disciplines in which simplification is achieved through symmetry. The search for new examples of manifolds with positive curvature has a long history, yet frustratingly few examples have been found. The PI proposes substantially new methods for constructing more examples, which could thereby lead to a better general understanding of the relationship between curvature and global shape.
虽然在理解曲率和拓扑之间的关系方面已经取得了巨大的进展,但正/非负截面曲率的经典主题仍然缺乏例子。PI提出了两种不同的方法来探索刚性和构造具有非负和正截面曲率的黎曼流形的新例子。第一种方法从问题开始:对每个紧李群上具有非负曲率的左不变度量进行分类。几乎所有已知的非负曲率结构都以双不变度量开始,因此回答这个问题将有助于我们衡量已知结构的刚性,并可能导致具有(至少是正曲率的)非负曲线流形的新例子。第二种方法与过去的研究有关,在这些研究中,PI给出了向量丛允许非负曲率的条件。更准确地说,如果向量丛允许非负曲率,那么一个基本的微分不等式将在其灵魂的点上可见的三个曲率联系在一起:灵魂的曲率,灵魂法丛中的连接曲率,以及与灵魂垂直的平面的曲率。反之,如果一个向量丛允许严格满足这一不等式的结构,则单位球丛允许正截曲率。PI建议使用这个定理来寻找向量丛(分别是球丛)上具有非负(分别为正)曲率的度量的新例子、障碍和刚性定理。微分几何为精确描述爱因斯坦的相对论、粒子物理和高维弯曲形状(称为流形)提供了数学语言。PI在这一领域提出的工作涉及研究具有正曲率的流形,这是流形在空间中曲线移动的视觉上的自然限制。过去的例子来自李群,在数学、物理、宇宙学、计算机动画和其他通过对称实现简化的不同领域中,李群是不可或缺的工具。寻找具有正曲率的流形的新例子已经有很长的历史了,但令人沮丧的是,很少有例子被发现。PI提出了构建更多示例的新方法,从而可以更好地全面理解曲率和全局形状之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristopher Tapp其他文献
Differential Geometry of Curves and Surfaces
- DOI:
10.1038/169560b0 - 发表时间:
1952-04 - 期刊:
- 影响因子:64.8
- 作者:
Kristopher Tapp - 通讯作者:
Kristopher Tapp
Metrics with nonnegative curvature on $${S^2 \times \mathbb{R}^4}$$
- DOI:
10.1007/s10455-011-9301-1 - 发表时间:
2011-11-13 - 期刊:
- 影响因子:0.700
- 作者:
Kristopher Tapp - 通讯作者:
Kristopher Tapp
Obstruction to Positive Curvature on Homogeneous Bundles
- DOI:
10.1007/s10711-006-9054-3 - 发表时间:
2006-04-25 - 期刊:
- 影响因子:0.500
- 作者:
Kristopher Tapp - 通讯作者:
Kristopher Tapp
Homogeneous Metrics with Nonnegative Curvature
- DOI:
10.1007/s12220-009-9081-z - 发表时间:
2009-06-11 - 期刊:
- 影响因子:1.500
- 作者:
Lorenz Schwachhöfer;Kristopher Tapp - 通讯作者:
Kristopher Tapp
Rigidity for Nonnegatively Curved Metrics on S 2 × R3
- DOI:
10.1023/b:agag.0000011731.46087.10 - 发表时间:
2004-03-01 - 期刊:
- 影响因子:0.700
- 作者:
Kristopher Tapp - 通讯作者:
Kristopher Tapp
Kristopher Tapp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristopher Tapp', 18)}}的其他基金
Positive and nonnegative curvature on bundles
束上的正曲率和非负曲率
- 批准号:
0303326 - 财政年份:2003
- 资助金额:
$ 7.87万 - 项目类别:
Standard Grant
Positive and nonnegative curvature on bundles
束上的正曲率和非负曲率
- 批准号:
0355120 - 财政年份:2003
- 资助金额:
$ 7.87万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 7.87万 - 项目类别:
Continuing Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
- 批准号:
BB/Y00566X/1 - 财政年份:2024
- 资助金额:
$ 7.87万 - 项目类别:
Research Grant
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
- 批准号:
23H00085 - 财政年份:2023
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
- 批准号:
23K03212 - 财政年份:2023
- 资助金额:
$ 7.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
- 批准号:
EP/W014807/2 - 财政年份:2023
- 资助金额:
$ 7.87万 - 项目类别:
Research Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
- 批准号:
2308839 - 财政年份:2023
- 资助金额:
$ 7.87万 - 项目类别:
Standard Grant
Collaborative Research: Electrotunable and Curvature-Dependent Friction at Nanoscale Contacts Lubricated by Ionic Liquids
合作研究:离子液体润滑纳米级接触处的电可调和曲率相关摩擦
- 批准号:
2216162 - 财政年份:2023
- 资助金额:
$ 7.87万 - 项目类别:
Standard Grant
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 7.87万 - 项目类别:
Standard Grant
Spaces with Ricci curvature bounded below
具有下界的里奇曲率空间
- 批准号:
2304698 - 财政年份:2023
- 资助金额:
$ 7.87万 - 项目类别:
Standard Grant